%0 Journal Article %T 细叶小檗碱的抑菌稳定性及其对细菌蛋白质的影响 %T The Antibacterial Stability of Berberine and Its Effect on Bacterial Protein %A 张俊顺;高铭坤;郭阳;骆嘉原;包怡红;符群;张海婷 %J 中国食品学报 %@ 1009-7848 %V 21 %N 12 %D 2021 %P 81-87 %K 小檗碱;抑菌;稳定性;蛋白质 %K berberine;antibacterial;stability;protein %X 通过滤纸片法测定细叶小檗碱对沙门氏菌、金黄色葡萄球菌、枯草芽孢杆菌与大肠杆菌的抑菌圈直径(DIZ),使用二倍稀释法测定其最低抑菌浓度(MIC),评估其抑菌活力。通过分析温度、pH值以及紫外线照射对小檗碱抑菌活力变化率的影响,研究其稳定性。此外,测定菌体细胞内外蛋白质浓度,聚丙烯酰胺凝胶电泳(SDS-PAGE)分析小檗碱对细菌蛋白质的影响。结果表明:小檗碱对4种供试菌种均有一定的抑菌效果,对大肠杆菌、枯草芽孢杆菌、金黄色葡萄球菌以及沙门氏菌的抑菌圈直径分别为(11.6±0.11),(10.1±0.18),(10.2±0.14)mm和(9.8±0.14)mm,最低抑菌浓度分别为2.40,3.60,3.30和3.945 mg/mL,对大肠杆菌的抑菌效果较显著。紫外线照射对小檗碱的抑菌活力几乎没有影响,强酸、强碱及高温破坏部分小檗碱的结构,抑菌活力降低。加入小檗碱的细菌细胞内蛋白浓度降低,而细胞外蛋白浓度增加。通过计算细胞蛋白总浓度以及SDS-PAGE分析表明小檗碱能够抑制蛋白的合成。 %X The filter paper method was used to determine the diameter of inhibition zone (DIZ) of berberine against Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Salmonella, and the minimum inhibitory concentration (MIC) was determined by the double dilution method to evaluate its antibacterial activity. The stability of berberine was determined by studying the effects of temperature, pH and ultraviolet on the rate of change of berberine's antibacterial activity. In addition, the influence of berberine on bacterial protein was determined by measuring the protein concentration inside and outside the bacterial cell and performing polyacrylamide gel electrophoresis (SDS-PAGE). The results showed that berberine had certain antibacterial effects on the four tested bacteria. The diameter of the inhibition zone against Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Salmonella was (11.6±0.11)mm, (10.1±0.18)mm, (10.2±0.14) mm and (9.8±0.14) mm respectively. The minimum inhibitory concentration is 2.40, 3.60, 3.30 and 3.945 mg/mL respectively. The antibacterial effect on Escherichia coli is more significant. Ultraviolet almost had no effect on the antibacterial activity of berberine. Strong acid, strong alkali or high temperature can destroy the structure of part berberine and reduced its antibacterial activity; The intracellular protein concentration of bacteria added with berberine decreased, while the extracellular protein concentration increased. Calculation of the total concentration of cell protein and SDS-PAGE analysis showed that berberine can inhibit protein synthesis. %R %U http://zgspxb.cnjournals.org/zgspxb/home %1 JIS Version 3.0.0