绵羊奶是羊奶产业的重要部分。据联合国粮农组织(FAOSTAT,2019)统计,2017年,世界绵羊奶产量约为1 156.7 万t,占羊奶总产量的38%。从全世界范围看,绵羊奶产业主要集中在欧洲、西亚和非洲,其中西班牙、意大利、法国、新西兰和澳大利亚等国家的绵羊奶产业比较发达,在绵羊奶深加工方面也已形成比较完善的体系[1]。在中国,羊奶是小品种乳的龙头,绵羊奶属于羊奶产业的“新培育产业”,在我国西部省份开始规模化养殖,产奶量亦快速增长,与牛奶和山羊奶相比,绵羊奶的营养组成和加工特性相关研究较缺乏,绵羊奶制品在我国奶制品加工领域尚处于初级阶段。
目前,全球绵羊数量约为12.02 亿只,奶绵羊数量约为2.46 亿只,共180 个品种,其中泌乳期产奶量大于200 kg 的奶绵羊种类有阿瓦西(Awassi)、阿萨夫(Assaf)、东弗里生(East Friesian)、拉科讷(Lacaune Sarda)、希俄斯(Chios)、曼切加(Manchega)[2]。湖羊和小尾寒羊是我国本土的两个奶绵羊品种[3]。近年来,为了扩大绵羊奶产业,我国通过引进世界高产的奶绵羊品种,与本土绵羊杂交,培育出适应本土生态特点的高产奶绵羊杂交品种。
绵羊奶基本营养组成受品种、季节、泌乳期、乳房健康状态、饲养条件、环境等因素影响[4]。其基本组成含量与荷斯坦牛奶、山羊奶、水牛奶和骆驼奶存在差异(表1)。平均100 g 绵羊奶中蛋白质占5.7%,脂肪占7.4%,乳糖占4.8%,灰分占0.9%,固形物含量占18.5%。绵羊奶的蛋白质、脂肪、固形物含量均显著高于山羊奶和荷斯坦牛奶,是良好的能量来源。研究发现,绵羊奶平均能量为5 932 kJ/kg,均显著高于荷斯坦牛(3 169~3 730 kJ/kg)、水牛(3 450 kJ/kg)、骆驼(3 283 kJ/kg)、山羊(3 018 kJ/kg)和人乳(2 407 kJ/kg)[5-8]。
表1 绵羊奶与其它物种奶的基本营养组成比较[9-10]
Table 1 Basic nutritional composition of sheep and other species milk[9-10]
?
1.1.1 主要蛋白 绵羊奶蛋白由酪蛋白和乳清蛋白组成。其中,酪蛋白包括αs1-,αs2-,β-和κ-酪蛋白。目前,关于绵羊奶酪蛋白组成含量的研究结果存在一定矛盾。Bramanti 等[11]认为绵羊奶主要的酪蛋白为αs1-酪蛋白 (山羊乳为β-酪蛋白),而Ruprichová 等[12]的最新研究指出绵羊奶含有5.3%αs1-酪蛋白,25.0%αs2-酪蛋白,59.5%β-酪蛋白和10.2%κ-酪蛋白,主要的酪蛋白为β-酪蛋白。原因可能与不同物种、泌乳期及喂养方式有很大关系。因此,为了能充分开发利用绵羊奶蛋白,影响绵羊奶蛋白组成含量的因素还需进一步系统研究。
αs1-,αs2-,β-和κ-酪蛋白是构成酪蛋白胶束的重要组成成分,酪蛋白胶束通过磷酸钙和少量的镁、钠、钾和柠檬酸盐相互连接,使乳样呈白色、不透明[13]。绵羊奶酪蛋白胶束的平均粒径、水合及矿化程度与牛奶、山羊奶有显著差异。绵羊奶酪蛋白胶束粒径大小介于山羊奶和牛奶之间 (牛奶150 nm<绵羊奶180 nm<山羊奶260 nm)。由于绵羊奶酪蛋白胶束中的无机钙和磷含量较高,矿化程度较高,导致其溶解性和热稳定性均较差。然而,粒径小、矿化程度高的酪蛋白胶束可缩短绵羊奶乳蛋白的凝乳时间,增加凝胶程度[14]。因此,绵羊奶蛋白能形成比山羊奶质地更佳的凝胶网络结构,是制备干酪的优良乳源[15]。
绵羊奶乳清蛋白主要由β-乳球蛋白、α-乳白蛋白、免疫球蛋白、血清白蛋白、乳铁蛋白、乳过氧化物酶和溶菌酶等组成。其中,β-乳球蛋白占总乳清蛋白的46.70%,是绵羊奶的主要乳清蛋白,且β-乳球蛋白/α-乳白蛋白的比值高于牛奶中β-乳球蛋白/α-乳白蛋白比值(3.91~6.65 vs 3.09~3.37)[16]。绵羊奶中乳铁蛋白和免疫球蛋白含量显著高于牛乳和山羊乳,与人乳的乳铁蛋白和免疫球蛋白含量接近,推测绵羊奶蛋白可能是具有较高生物活性的乳蛋白[17]。在加工特性方面,绵羊奶中的乳清蛋白对热比较敏感,绵羊奶在65 ℃/30 min 巴氏杀菌条件下,约15%的水溶性乳清蛋白会发生变性,而牛奶乳清蛋白只有2.3%发生变性[18]。然而,研究发现绵羊乳清蛋白浓缩液比牛奶和山羊奶乳清蛋白浓缩液具有更好的起泡性、泡沫稳定性和凝胶强度[19]。
1.1.2 微量蛋白 近年来,通过蛋白质组学技术已鉴定出绵羊奶中有718 种蛋白质,其中,29%的蛋白与牛奶共有,71%的蛋白是绵羊奶中特有的且具有潜在健康促进作用的特异性蛋白,如骨髓抗菌肽MAP34、牛抗菌肽6 Bac6、抗菌肽CATH2、凝血因子XII 等,它们在防御和免疫机制中起着重要的生物活性[22]。而且,不同品种的绵羊奶之间的蛋白数量和种类也存在显著差异,在防御反应、免疫调节、细胞凋亡和细胞分化功能等方面可能也发挥着不同的功效[23]。
表2 绵羊奶与其它物种奶主要蛋白组成比较[15,17,20-21]
Table 2 Comparison of main protein composition between sheep milk and other species[15,17,20-21]
?组成 绵羊奶 牛奶 山羊奶总蛋白/g·(100 g)-1 5.5 3.4 3.7总酪蛋白/g·(100 g)-1 4.7 3.0 2.4 αS1-酪蛋白/%总酪蛋白 6.7 39.7 5.6 αS2-酪蛋白/%总酪蛋白 22.8 10.3 19.2 β-酪蛋白/%总酪蛋白 61.6 32.7 54.8 κ-酪蛋白/%总酪蛋白 8.9 11.6 20.4总乳清蛋白/g·(100 g)-1 1.1 0.6 0.5 β-乳球蛋白/%总乳清蛋白 46.70 51 47 α-乳白蛋白/%总乳清蛋白 13.50 20 27血清白蛋白/%总乳清蛋白 6 6~7.5 5~22乳铁蛋白/g·kg-1 0.7~0.9 0.02~0.5 0.02~0.3免疫乳球蛋白/g·kg-1 0.5~0.7 0.15~1.0 0.15~0.5
乳脂肪球膜蛋白是乳脂肪球膜 (Milk fat globule membrane,MFGM)上重要的组成部分,约占MFGM 质量的25%~70%,占总乳蛋白的1%~4%[24]。已鉴定出绵羊奶MFGM 蛋白有558 种[25],其中,高丰度蛋白有嗜乳脂蛋白、黄嘌呤脱氢酶/氧化酶、乳凝集素、脂滴分化蛋白、肌动蛋白等。与牛奶和山羊奶相比,绵羊奶的乳凝集素和黏蛋白MUC-1,存在显著差异[26-27]。通过GO(Gene ontology)生物信息技术分析,揭示出绵羊奶MFGM蛋白在细胞信号传导、细胞凋亡、免疫调节、脂质运输和代谢等生理功能方面显著富集[26]。然而,绵羊奶与其它物种乳源的MFGM 蛋白组成及生理活性的区别还有待分析比较。
绵羊奶的脂质含量(6.99%)高于牛奶(4.09%)和山羊奶(4.07%)。绵羊奶脂肪球平均粒径约为3.50 μm,小于牛奶(4.55 μm),大于山羊奶(2.75 μm)[28]。由于脂肪球粒径较小,比表面积较大,与脂肪酶结合的几率增大,再加上绵羊奶的中短链和长链脂肪酸比例较高,更容易被胃脂肪酶水解,利于小肠上皮细胞吸收,因此,与牛奶相比,绵羊奶的消化率和代谢效率更高[29]。目前关于绵羊奶的脂肪酸和甘油三酯组成已有大量报道[30-33]。然而,由于乳脂的脂肪酸谱受遗传(品种、基因型)、生理(年龄、哺乳期、季节)和环境(摄食、放牧)等因素的影响[34],已报道的绵羊奶脂质组成含量可能存在一定的差异。与牛奶和山羊奶相比,绵羊奶脂质仍存在一定差异特点(表3)。
表3 牛奶、山羊和绵羊奶的脂肪酸和三酰基甘油组成含量(%)[13, 30, 40-41]
Table 3 Compositions of fatty acids and triacylglycerol in cow,goat and sheep milk (%)[13, 30, 40-41]
?
1.2.1 甘油三酯和脂肪酸 绵羊奶的甘油三酯组成与牛奶相似,而绵羊奶的中链甘油三酯 (C26~C36)含量高于牛奶,长链甘油三酯(C46~C54)含量低于牛奶。
绵羊奶中含量较高的脂肪酸主要有C4:0,C10:0,C12:0,C14:0,C16:0 和C18:0,C18:1,其含量占75%以上的总脂肪酸含量[8]。Sinanoglou 等[35]研究发现,绵羊奶富含中链和短链脂肪酸,约占11%,其中己酸(C6:0)(2.9% vs 1.6%)、辛酸(C8:0)(2.6% vs 1.3%)、癸酸(C10:0)(7.8% vs 3.0%)和月桂酸(C12:0)(4.4%vs 3.1%)显著高于牛奶,这些脂肪酸对绵羊奶奶酪的特色风味发挥着重要的作用,还可用来鉴别绵羊奶的真实性。另外,这些中链和短链脂肪酸容易被肠上皮细胞直接吸收,为机体提供能量,不会在机体内积累、酯化,引起总胆固醇和低密度脂蛋白含量的增加[30]。因此,绵羊奶快速供应能量的特点对患有营养不良或脂肪吸收不良综合征的患者来说,是一个不错的选择。
绵羊奶中的多不饱和脂肪酸主要有亚油酸(C18:2)和α-亚麻酸(C18:3)。这些多不饱和脂肪酸可以抑制动脉粥样化和血栓形成,预防心血管疾病[36]。绵羊奶中共轭亚油酸(CLA)含量高于其它反刍动物[37],并且共轭亚油酸(CLA)含量随季节变化有显著变化,夏季绵羊奶CLA 含量显著高于冬季(12.8% vs 0.54%),这与季节变化所食饲料质量有很大关系[38]。绵羊奶中ω6 与ω3 多不饱和脂肪酸的比例(ω6/ω3)低于山羊奶(2.68 vs 9.35)[21,30]。ω6/ω3 脂肪酸比例越低,更有利于降低心血管、癌症等慢性疾病风险。理想的ω6/ω3 比为1/1~4/1,当比值大于5 时,会引起心血管疾病、癌症、炎症和自身免疫性疾病的发生[39]。
1.2.2 磷脂、固醇和脂溶性维生素 乳磷脂主要由磷脂酰乙醇胺(PE)、磷脂酰胆碱(PC)、磷脂酰丝氨酸(PS)、磷脂酰肌醇(PI)、鞘磷脂(SM)、鞘糖脂(葡糖神经酰胺、乳糖神经酰胺)和神经节苷脂组成。不同研究者报道的绵羊奶磷脂组成含量存在一定差异(表4)。与山羊奶相比,绵羊奶总磷脂含量较低,SM 含量较多。虽然不同种乳的磷脂组成基本一致,但其磷脂的脂肪酸组成含量不同。Zancada 等[42]发现绵羊奶、山羊奶和牛奶磷脂中的脂肪酸组成主要为C18:0、C16:0 和C18:1,且与山羊奶相比,绵羊奶还有较高含量的长链脂肪酸 (C22~C24,9.5% vs 2.2%) 和较低含量的中链脂肪酸(C10~C15,3.4% vs 19.6%),且脂肪酸不饱和程度低于山羊奶。绵羊奶唾液酸比牛奶少4~6 倍[43]。从磷脂组成含量的差异性可推测出,绵羊奶的乳脂肪球膜的生物活性可能与山羊奶和牛奶之间存在差异。
表4 绵羊奶、山羊奶和牛奶磷脂、固醇组成含量(%)[42, 44-45]
Table 4 Compositions of phospholipid and sterol in sheep,goat and cow milk (%)[42, 44-45]
?组成 绵羊奶 牛奶 山羊奶总磷脂/%总脂质 0.70,0.38,0.40 0.82,0.36 1.05,0.56,0.71 PE/%极性脂质 30.5,32.7,26.1 32.0,36.6 31.6,29.17,26.9 PC/%极性脂质 24.5,27.2,27.0 25.1,24.6 27.0,26.25,31.90 PS/%极性脂质 10.6,5.0,10.7 12.1,7.3 12.5,7.65 PI/%极性脂质 6.30,4.2,6.4 8.3,6.18 6.7,5.77 SM/%极性脂质 28.2,26.1,29.70 22.6,20.3 22.2,23.24,27.3乳糖神经酰胺/%极性脂质 4.98 5.10 7.57固醇/mg·m-2 MFGM 1.8 1.7 1.5固醇∶鞘磷脂(mol/mol) 2.8 3.6 2.9
另外,胆固醇与SM 的比例与MFGM 的液体有序相(Lo)的面积或数量呈反比,而Lo 结构可与胆盐结合,利于脂肪球的消化。研究发现,绵羊奶和山羊奶的固醇/SM 比值小于牛奶,Lo 的面积或数量大于牛奶,可增加与胆盐的结合几率,这可能也是绵羊奶和山羊奶脂肪球利于消化的另一个重要原因[44]。
脂溶性维生素也是乳脂肪球的成分。一般来说,牛奶中的维生素含量差别很大,取决于母体的维生素状况和饮食。有研究表明,绵羊乳中VA 和VD 含量要显著高于牛乳[22]。
乳中矿物质主要含有钙、磷、钠、钾、氯、碘、镁和少量铁。Guéguen 等[46]研究发现,钙与酪蛋白结合后,可增加钙的消化利用率,认为钙的生物利用率与酪蛋白的含量密切相关。与牛奶(0.90~1.84 g/L)和山羊奶(1.26~1.34 g/L)相比,绵羊奶总钙含量(1.59~2.42 g/L)较高,可见,绵羊奶是钙的最佳乳源[47]。另外,钙有助于酪蛋白之间交联和聚合,钙含量较高的绵羊奶在生产奶酪时不需添加CaCl2,且添加少量的凝乳酶,就可形成质地优于牛奶和山羊奶的凝胶网络结构。
乳铁蛋白(Lactoferrin,Lf)具有抗菌、免疫调节和抗癌等活性[48]。绵羊奶中Lf 含量为0.7~0.9 g/L,约牛奶(0.02~0.5 g/L)的3 倍多,而关于绵羊奶Lf的生物活性功能评价的研究较少。Conesa 等[37]和Parrón 等[49]研究发现,与人乳相比,绵羊奶Lf 对大肠杆菌O157:H7 和轮状病毒的抑菌活性较高。绵羊奶Lf 不受63 ℃/30 min 的影响,而牛奶和人乳的Lf 分别会失去60%和44%的抗病毒活性,且在高温短时巴氏杀菌条件下,绵羊奶Lf 的热稳定性和免疫调节活性均高于牛奶Lf[50]。由此可知,绵羊奶是良好的Lf 来源,对其高营养价值产品的开发非常重要。
乳源生物活性肽是将乳蛋白经过水解及分离纯化后得到的具有特殊生物活性的肽段。目前,通过不同来源的水解酶和水解方式,分离出多种具有抑制ACE、抗氧化、抑菌等活性蛋白肽。与牛奶和山羊奶一样,绵羊奶也是生物活性肽的重要来源。
目前,利用胃肠道消化酶和微生物水解酶已从绵羊奶的α-,β-,κ-酪蛋白中获得具有ACE 抑制活性、抗氧化和抗菌活性的不同肽段,如表5所示。除了以绵羊液态奶为原料外,从不同种类的酸奶和奶酪中也获得了具有一定生物活性的肽段。并且,Politis 等[51]和Moschopoulou 等[52]研究比较了不同物种酸奶中水溶性成分的生物活性,发现绵羊酸奶的抑制ACE、抗炎、清除DPPH 活性高于牛奶和山羊奶。
另外,绵羊奶干酪的副产物乳清中主要包含有乳清蛋白和糖巨肽(Glycomacropeptide,GMP),从它们的水解产物中也分离出具有一定活性的肽段(表5)。而且GMP 是在干酪制作过程中,凝乳酶水解κ-酪蛋白C 端(f106-169)的亲水糖基化部分,其糖链分子是抑制病原体黏附细胞活性的重要原因[53]。
表5 绵羊奶生物活性肽
Table 5 Bioactive peptides of sheep milk
来源 水解酶来源 功能活性 活性肽段 文献酪蛋白 瑞士乳杆菌丝氨酸蛋白酶?抑制ACE 活性 αs1-CN f(1-6),αs2-CN f(182-185),f(186-188)Minervini 等[54]酪蛋白 胃肠消化酶 抑制ACE 活性 κ-CN f(22-24),f(43-49),f(76-86),f(28-29)Gómez-Ruiz 等[55]酪蛋白 胃肠消化酶 抗氧化活性 κ-CN f(98-105) Gómez-Ruiz 等[56]酪蛋白 芽孢杆菌蛋白酶 抗氧化活性和抑菌活性 水解物 Daroit 等[57],Corrêa 等[58]甜乳清和酸乳清胰蛋白酶、糜蛋白酶、蛋白酶K 和嗜热菌蛋白酶抑制ACE 活性 β-Lg f(46-53),f(58-61),f(103-105),f(122-125)Hernández-Ledesma等[59]乳清蛋白 细菌和真菌蛋白酶抗氧化和抑制ACE 活性 水解物 Welsh 等[60]乳清蛋白 芽孢杆菌蛋白酶 抑制ACE 活性 β-Lg f(149-162) Corrêa 等[61]曼彻格奶酪 发酵剂 成熟过程中ACE 抑制活性β-CN f(199-204) Gómez-Ruiz 等[62]罗克福奶酪 水解物 抗氧化活性和ACE 抑制活性Meira 等[63]斯卡莫扎奶酪益生菌 β-CN f(210-220),αs1-CN f(1-23) Albenzio 等[64]酸奶 发酵剂 ACE 抑制活性,抗炎,清除DPPH 活性β-CN f(114-121)或水溶性成分 Politis 等[51]糖巨肽 胰蛋白酶 抑制细胞粘附 f(112-116),f(163-171),f(165-171)Qian 等[65]Moatsou 等[66]
乳中的低聚糖主要含有D-葡萄糖(Glc)、D-半乳糖(Gal)、N-乙酰氨基葡萄糖(GlcNAc)、L-岩藻糖(Fuc)和唾液酸,含量低,是一种对人类有多种生物学功能的化合物[67]。目前,已有115 种人乳低聚糖被鉴定出,人乳常乳和初乳的低聚糖含量分别可达12~13 g/L 和22~24 g/L,仅次于乳糖和脂肪[68]。在绵羊奶中,低聚糖含量仅有0.02~0.04 g/L,均显著低于牛奶(0.03~0.06 g/L)和山羊奶(0.25~0.3 g/L)[69]。研究已证实,乳寡糖不易被胃肠道消化,可作为益生元刺激结肠中双歧杆菌生长,改善肠道健康[70]。Boudry 等[71]研究发现,牛奶中的低聚糖可以调节因膳食诱导的肥胖小鼠的肠道微生物群,改善肠道屏障功能。而且,低聚糖还可防止病原微生物在胃肠道细胞中的黏附作用,保护婴儿免疫系统[72]。唾液酸可以促进大脑发育,提高认知功能[73]。目前,关于绵羊乳中低聚糖结构及相应生物学功能尚处于空白阶段。
乳脂肪球膜是包裹于甘油三酯表面的3 层生物膜,由极性脂质(PE,PI,PS,SM)、神经节苷脂、胆固醇、蛋白、糖蛋白和脂溶性维生素组成。乳脂肪球膜具有抑制结肠癌及致病菌在肠道内的黏附,减少机体脂肪积累,抑制胰岛素抵抗等多种生理活性,可添加至婴幼儿配方粉中降低婴幼儿腹泻、发烧急性中耳炎的发病率,提高免疫力[74-78]。绵羊奶MFGM 生物活性与其它乳源的MFGM 存在一定差异,研究发现,绵羊奶MFGM 抑制轮状病毒活性显著高于牛奶 (IC50 51.3% vs 32.2%)[79]。除生物活性外,MFGM 的加工稳定性也备受关注。研究发现,热处理(>60 ℃)会使牛奶MFGM 蛋白和磷脂发生不同程度的变性,显著降低癌细胞增值的抑制作用[76]。不当的热加工处理会影响乳脂肪球膜的稳定性,影响其生物学活性。而绵羊奶脂肪球膜的热稳定性如何,加工处理是否会影响绵羊奶MFGM 生物活性,尚不清楚。
绵羊奶口感绵密,羊膻味没有山羊奶重,风味偏甜。绵羊奶因其高固形物、高钙的特点,无需增加固形物或稳定剂,就可制作出风味独特、质地优良的酸奶和奶酪。在亚洲和非洲国家,绵羊奶也被用来制作成黄油和酥油。据FAO(2016)数据统计,全球绵羊奶奶酪总产量为6.8030 亿kg,绵羊奶黄油和酥油总产量为6 325 万kg。国际上著名的绵羊奶奶酪种类主要有佩科里诺干酪、罗马诺干酪、曼契戈干酪、罗克福干酪和菲达奶酪。
绵羊奶本身的CLA 含量较牛奶和山羊奶高,因此其酸奶和奶酪中也有较丰富的CLA(0.405~1.250 g CLA/100 g 脂肪),具有抗肥胖、抗肿瘤、抗氧化和抗糖尿病的免疫调节作用,绵羊奶制成的酸奶和奶酪的生物活性可能优于牛奶、山羊奶[80-81]。目前,通过添加菊粉[82]、雪莲果[83]、益生元[84]、益生菌[85]等,不仅丰富了绵羊酸奶和奶酪的种类,而且增加了其功能特性。
除此之外,由于季节性产量和每头母羊的产奶量较低,挤出的绵羊奶通常先在农场冷冻,直到积累足够量的奶再进一步加工。研究发现,如果羊奶被冷冻在-27 ℃或更低温度下,存放不到12 个月,仍然可以生产出高质量的奶酪[86]。由此推测,绵羊奶的加工特性可能与牛奶、山羊奶存在差异。
目前,国外已在绵羊奶的化学组成、营养特性及其乳制品研发方面开展了部分工作。证明了绵羊奶的营养组成在某些方面有别于牛奶、山羊奶,是良好的营养乳源,并且,由于高固形物、高蛋白和脂肪的特点,主要用于奶酪和酸奶的生产。为了促进绵羊奶产业发展,关于绵羊奶的营养功能、加工特性及丰富产品研发方面仍需更深入的研究。国内关于绵羊奶研究还处于起步阶段,需要加大力度,紧跟国际研发水平,发展属于我国特色的绵羊产业。
未来,绵羊奶研究可从以下几个重要方向开展:建立我国本土绵羊奶营养组成的数据库;绵羊奶区别于山羊奶、牛奶及其它反刍动物奶的营养功能特点研究;绵羊奶的加工特性及机制;丰富功能性绵羊奶产品的多样性等,以期推动我国绵羊奶产业的发展。
[1]宋宇轩,安小鹏,张磊,等.奶绵羊产业概况及中国奶绵羊产业的前景分析[J].中国乳业,2019,8(212):16-21.
SONG Y X,AN X P,ZHANG L,et al.General situation of dairy sheep industry and prospect analysis of Chinese dairy sheep industry[J].China Dairy,2019,8(212):16-21.
[2]SHINDE A K,NAQVI S M K.Prospects of dairy sheep farming in India:An overview [J].Indian Journal of Small Ruminants,2015,21(2):180-195.
[3]鲍星升.开发食用湖羊乳的分析研究[J].中国养羊,1997,17(3):44-45.
BAO X S.Analysis and study on exploitation of edible lake goat milk[J].China Sheep,1997,17(3):44-45.
[4]PARK Y W.Goat milk-chemistry and nutrition[M].Oxford,UK:Blackwell Publishing,2006:34-58.
[5]BARLOWSKA J.Nutritional value and technological usability of milk from cows of 7 breeds maintained in Poland[D].Lublin:University of Life Sciences,2007.
[6]KANWAL R,AHMED T,MIRZA B.Comparative analysis of quality of milk collected from buffalo,cow,goat and sheep of Rawalpindi/Islamabad region in Pakistan [J].Asian Journal of Plant Sciences,2004,3(3):300-305.
[7]SHAMSIA S M.Nutritional and therapeutic properties of camel and human milks[J].International Journal of Genetics & Molecular Biology,2007,1(2):52-58.
[8]PARK Y W,JUAREZ M,RAMOS M,et al.Physico-chemical characteristics of goat and sheep milk[J].Small Ruminant Research,2007,68(1/2):88-113.
[9]KAPADIYA D B,PRAJAPATI D B,JAIN A K,et al.Comparison of Surti goat milk with cow and buffalo milk for gross composition,nitrogen distribution,and selected minerals content[J].Veterinary World,2016,9(7):710-716.
[10]GIAMBRA I,BRANDT H,ERHARDT G.Milk protein variants are highly associated with milk performance traits in East Friesian Dairy and Lacaune sheep[J].Small Ruminant Research,2014,121(2/3):382-394.
[11]BRAMANTI E,SORTINO C,RASPI G.New chromatographic method for separation and determination of denatured αs1-,αs2-,β-and κ-caseins by hydrophobic interaction chromatography[J].Journal of Chromatography A,2002,958(1/2):157-166.
[12]RUPRICHOVÁ L,TOMPA G,KRÁLOVÁ M I,et al.Profiling of caseins in cows',goats' and ewes'milk and dairy products by reversed-phase highperformance liquid chromatography [J].Journal of Food & Nutrition Research,2015,54(3):218-228.
[13]PARK Y W.Rheological characteristics of goat and sheep milk[J].Small Ruminant Research,2007,68(1/2):73-87.
[14]BORNAZ S,SAHLI A L I,ATTALAH A,et al.Physicochemical characteristics and renneting properties of camels' milk:A comparison with goats',ewes' and cows' milks[J].International Journal of Dairy Technology,2010,62(4):505-513.
[15]MOATSOU G,SAMOLADA M,KATSABEKI A,et al.Casein fraction of ovine milk from indigenous Greek breeds[J].Dairy Science & Technology,2004,84(3):285-296.
[16]MOATSOU G,HATZINAKI A,SAMOLADA M,et al.Major whey proteins in ovine and caprine acid wheys from indigenous greek breeds[J].International Dairy Journal,2005,15(2):123-131.
[17]CLAEYS W L,VERRAES C,CARDOEN S,et al.Consumption of raw or heated milk from different species:An evaluation of the nutritional and potential health benefits[J].Food Control,2014,42(8):188-201.
[18]MOLIK E,BONCZAR G,MISZTAL T,et al.Milk protein[M].Rijeka:Hurley WL,2012:66-68.
[19]WENDORFF W L.Encyclopedia of animal science[M].New York:Marcel Dekker,2005:89-90.
[20]SELVAGGI M,LAUDADIO V,DARIO C,et al.Investigating the genetic polymorphism of sheep milk proteins:A useful tool for dairy production[J].J Food Agric,2015,94(15):3090-3099.
[21]ALICHANIDIS E,MOATSOU G,POLYCHRONIADOU A.Non-bovine milk and milk products[M].London:Elsevier,2016:81-116.
[22]CUNSOLO V,SALETTI R,MUCCILLI V,et al.Protein and bioactive peptides from donkey milk:The molecular basis for its reduced allergenic properties[J].Food Research international,2017,99(1):41-57.
[23]ANAGNOSTOPOULOS A K,KATSAFADOU A,PIERROS V,et al.Milk of Greek sheep and goat breeds;characterization by means of proteomics[J].Journal of Proteomics,2016,147(16):76-84.
[24]MATHER I H.A review and proposed nomenclature for major proteins of the milk-fat globule membrane[J].Journal of Dairy Science,2000,83(2):203-247.
[25]BERNARD L,BONNET M,DELAVAUD C,et al.Milk fat globule in ruminant:Major and minor compounds,nutritional regulation and differences among species[J].European Journal of Lipid science and Technology,2018,120(5):1-27.
[26]PISANU S,GHISAURA S,PAGNOZZI D,et al.The sheep milk fat globule membrane proteome[J].Journal of Proteomics,2011,74(3):350-358.
[27]PISANU S,GHISAURA S,PAGNOZZI D,et al.Characterization of sheep milk fat globule proteins by two-dimensional polyacrylamide gel electrophoresis/mass spectrometry and generation of a reference map[J].International Dairy Journal,2012,24(2):78-86.
[28]MEHAIA M A.Fat globule size distribution in camel,goat,ewe and cow milk [J].Milchwissenschaft-milk Science International,1995,50(5):260-263.
[29]SINGH H,GALLIER S.Nature's complex emulsion:The fat globules of milk[J].Food Hydrocolloids,2016,68(2):81-89.
[30]BALTHAZAR C F,PIMENTEL T C,FERRÃO L L,et al.Sheep milk:Physicochemical characteristics and relevance for functional food development[J].Comprehensive Reviews in Food Science and Food Safety,2017,16(2):247-262.
[31]DE LA FUENTE M A,RAMOS M,RECIO I,et al.Milk and dairy products and human nutrition[M].West Sussex:John Wiley Sons,Ltd,2013:554-576.
[32]WENDORFF W L,HAENLEIN G F W.Handbook of milk of non-bovine mammals[M].2ed.West Sussex:John Wiley Sons,Ltd,2017:210-221.
[33]SMIDDY M A,HUPPERTZ T,RUTH S M V.Triacylglycerol and melting profiles of milk fat from several species[J].International Dairy Journal,2012,24(2):64-69.
[34]FUENTE L F D L,BARBOSA E,CARRIEDO J A,et al.Factors influencing variation of fatty acid content in ovine milk[J].Journal of Dairy Science,2009,92(8):3791-3799.
[35]SINANOGLOU V J,KOUTSOULI P,FOTAKIS C,et al.Assessment of lactation stage and breed effect on sheep milk fatty acid profile and lipid quality indices[J].Dairy Science & Technology,2015,95(4):509-531.
[36]FERLAY A,BERNARD L,MEYNADIER A,et al.Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health[J].Biochimie,2017,141(5):107.
[37]CONESA C,SÁNCHEZ L,ROTA C,et al.Isolation of lactoferrin from milk of different species:Calorimetric and antimicrobial studies[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2008,150(3):131-139.
[38]JAHREIS G,FRITSCHE J,MÖCKEL P,et al.The potential anticarcinogenic conjugated linoleic acid,cis-9,trans-11 C18:2,in milk of different species:Cow,goat,ewe,sow,mare,woman[J].Nutrition Research,1999,19(10):1541-1549.
[39]RUSSO G L.Dietary n-6 and n-3 polyunsaturated fatty acids:From biochemistry to clinical implica tions in cardiovascular prevention[J].Biochemical Pharmacology,2009,77(6):937-946.
[40]MACGIBBON A K H,TAYLOR M W.Composition and structure of bovine milk lipids[M].3rd ed.N.Y.,U.S.A.:Springer,2006:1-42.
[41]ALBENZIO M,SANTILLO A,AVONDO M,et al.Nutritional properties of small ruminant food products and their role on human health[J].Small Ruminant Research,2016,135(4):3-12.
[42]ZANCADA L,PÉREZ-DÍEZ F,SÁNCHEZ-JUANES F,et al.Phospholipid classes and fatty acid composition of ewe's and goat's milk[J].Grasas Y Aceites,2013,64(2):304-310.
[43]RAYNAL-LJUTOVAC K,LAGRIFFOUL G,PACCARD P,et al.Composition of goat and sheep milk products:An update[J].Small Ruminant Research,2008,79(1):57-72.
[44]ET-THAKAFY O,GUYOMARC'H F,LOPEZ C.Lipid domains in the milk fat globule membrane:Dynamics investigated in situ in milk in relation to temperature and time[J].Food Chemistry,2017,220(1):352-361.
[45]RODRÍGUEZ-ALCALÁ L M,FONTECHA J.Major lipid classes separation of buttermilk,and cows,goats and ewes milk by high performance liquid chromatography with an evaporative light scattering detector focused on the phospholipid fraction[J].Journal of Chromatography A,2010,1217(18):3063-3066.
[46]GUÉGUEN L,POINTILLART A.The bioavailability of dietary calcium[J].Journal of the American College of Nutrition,2000,19(2):119S-136S.
[47]BURROW K,YOUNG W,CARNE A,et al.Consumption of sheep milk compared to cow milk can affect trabecular bone ultrastructure in a rat model[J].Food & Function,2019,10(1):163-171.
[48]FRANCESCO G,GLORIA P,LORIS L,et al.Lactoferrin from milk:Nutraceutical and pharmacological properties[J].Pharmaceuticals,2016,9(4):61.
[49]PARRÓN J A,RIPOLLÉS D,NAVARRO,F,et al.Effect of high pressure treatment on the antirotaviral activity of bovine and ovine dairy by-products and bioactive milk proteins[J].Innovative Food Science & Emerging Technologies,2018,48(4):265-273.
[50]NAVARRO F,HAROUNA S,CALVO M,et al.Kinetic and thermodynamic parameters for thermal denaturation of ovine milk lactoferrin determined by its loss of immunoreactivity[J].Journal of Dairy Science,2015,98(7):4328-4337.
[51]POLITIS I,THEODOROU G.Angiotensin I-converting (ACE)-inhibitory and anti-inflammatory properties of commercially available Greek yoghurt made from bovine or ovine milk:A comparative study[J].International Dairy Journal,2016,58(3):46-49.
[52]MOSCHOPOULOU E,SAKKAS L,ZOIDOU E,et al.Effect of milk kind and storage on the biochemical,textural and biofunctional characteristics of settype yoghurt[J].International Dairy Journal,2017,77(4):47-55.
[53]MOATSOU G,HATZINAKI A,KANDARAKIS I,et al.Nitrogenous fractions during the manufacture of whey protein concentrates from Feta cheese whey[J].Food Chemistry,2003,81(2):209-217.
[54]MINERVINI F,ALGARON F,RIZZELLO C G,et al.Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species.Applied and Environmental Microbiology[J].Microbiol,2003,69(9):5297-5305.
[55]GÓMEZ-RUIZ J A,RAMOS M,RECIO I.Identification of novel angiotensin-converting enzyme-inhibitory peptides from ovine milk proteins by CEMS and chromatographic techniques[J].Electrophoresis,2010,28(22):4202-4211.
[56]GÓMEZ-RUIZ I A,LÓPEZ-EXPÓSITO I,PIHLANTO A,et al.Antioxidant activity of ovine casein hydrolysates:Identification of active peptides by HPLC-MS/MS[J].European Food Research & Technology,2008,227(4):1061-1067.
[57]DAROIT D J,CORRÊA,ANA PAULA F,CANALES M M,et al.Physicochemical properties and biological activities of ovine caseinate hydrolysates[J].Dairy Science and Technology,2012,92(4):335-351.
[58]CORRÊA A P F,DAROIT D J,COELHO J,et al.Antioxidant,antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease[J].Journal of the Science of Food& Agriculture,2011,91(12):2247-2254.
[59]HERNÁNDEZ-LEDESMA B,RECIO I,RAMOS M,et al.Preparation of ovine and caprine β-lactoglobulin hydrolysates with ACE-inhibitory activity.Identification of active peptides from caprine β-lactoglobulin hydrolysed with thermolysin[J].International Dairy Journal,2002,12(10):805-812.
[60]WELSH G,RYDER K,BREWSTER J,et al.Comparison of bioactive peptides prepared from sheep cheese whey using a food-grade bacterial and a fungal protease preparation[J].International Journal of Food Science & Technology,2017,52 (5):1252-1259.
[61]CORRÊA A P F,DAROIT D J,FONTOURA R,et al.Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities[J].Peptides,2014,61(9):48-55.
[62]GÓMEZ-RUIZ J A,RAMOS M,RECIO I.Angiotensin-converting enzyme-inhibitory peptides in Manchego cheeses manufactured with different starter cultures[J].International Dairy Journal,2002,12(8):697-706.
[63]MEIRA S M M,DAROIT D J,HELFER V E,et al.Bioactive peptides in water-soluble extracts of ovine cheeses from Southern Brazil and Uruguay[J].Food Research International,2012,48(1):322-329.
[64]ALBENZIO M,SANTILLO A,MARINO R,et al.Identification of peptides in functional Scamorza ovine milk cheese [J].Journal of Dairy Science,2015,98(12):8428-8432.
[65]QIAN Z Y,JOLLÈS P,MIGLIORE-SAMOUR D,et al.Sheep kappa-casein peptides inhibit platelet aggregation[J].Biochimica Et Biophysica Acta,1995,1244(2/3):411-417.
[66]MOATSOU G,HATZINAKI A,KANDARAKIS I,et al.Nitrogenous fractions during the manufacture of whey protein concentrates from Feta cheese whey[J].Food Chemistry,2003,81(2):209-217.
[67]CRISÁ A.Milk carbohydrates and oligosaccharides[M].West Sussex:John Wiley Sons,Ltd,2013:129-147.
[68]URASHIMA T,TAUFIK E,FUKUDA K,et al.Recent advances in studies on milk oligosaccharides of cows and other domestic farm animals[J].Journal of the Agricultural Chemical Society of Japan,2013,77(3):455-466.
[69]USEH N M,OLANIYAN O A,NOK A J.Comparative analysis of sialic acid levels in the colostrum and milk of ruminants:Possible role in the passive immunity against neonatal infections[J].International Journal of Dairy Technology,2008,61(3):253-255.
[70]OLIVEIRA D L,WILBEY R A,GRANDISON A S,et al.Milk oligosaccharides:A review[J].International Journal of Dairy Technology,2015,68(3):305-321.
[71]BOUDRY G,HAMILTON M K,CHICHLOWSKI M,et al.Bovine milk oligosaccharides decrease gut permeability and improve inflammation and microbial dysbiosis in diet-induced obese mice[J].Journal of Dairy Science,2017,100(4):2471.
[72]NEWBERG D,NEUBAUER S.Carbohydrates in milks[M].San Diego:Academic Press,1995:273-349.
[73]GIORGIO D,DI TRANA A,CLAPS S.Oligosaccharides,polyamines and sphingolipids in ruminant milk[J].Small Ruminant Research,2018,160(4):23-30.
[74]SNOW D R,JIMENEZ-FLORES R,WARD R E,et al.Dietary milk fat globule membrane reduces the incidence of aberrant crypt foci in Fischer-344 rats[J].Journal of Agricultural & Food Chemistry,2010,58(4):2157.
[75]CORREDIG M,ZANABRIA R,GRIFFITHS M W,et al.The antiproliferative properties of the milk fat globule membrane are affected by extensive heating[J].Dairy Science & Technology,2014,94 (5):439-453.
[76]ZANABRIA R,TELLEZ A M,GRIFFITHS M,et al.Modulation of immune function by milk fat globule membrane isolates[J].Journal of Dairy Science,2014,97(4):2017-2026.
[77]DEMMER E,VAN LOAN M D,RIVERA N,et al.Addition of a dairy fraction rich in milk fat globule membrane to a high-saturated fat meal reduces the postprandial insulinaemic and inflammatory response in overweight and obese adults[J].Journal of Nutritional Science,2016,5(3):14.
[78]TIMBY N,HERNELL O,VAARALA O,et al.Infections in infants fed formula supplemented with bovine milk fat globule membranes[J].Journal of Pediatric Gastroenterology and Nutrition,2015,60(3):384-389.
[79]PARRÓN J A,RIPOLLÉS D,PÉREZ M D,et al.Antirotaviral activity of bovine and ovine dairy byproducts[J].Journal of Agricultural and Food Chemistry,2017,65(21):4280-4288.
[80]WANG T,LEE H G.Advances in research on cis-9,trans-11 conjugated linoleic acid:A major functional conjugated linoleic acid isomer[J].Critical Reviews in Food Science and Nutrition,2015,55:720-731.
[81]YUAN G F,CHEN X E,LI D.Conjugated linolenic acids and their bioactivities:A review[J].Food & Function,2014,5(7):1360-1368.
[82]BALTHAZAR C F,JUNIOR C A C,MORAES J,et al.Physicochemical evaluation of sheep milk yogurts containing different levels of inulin[J].Journal of Dairy Science,2016,99(6):4160-4168.
[83]FABERSANI E,GRANDE M V,COLL A M V,et al.Metabolic effects of goat milk yogurt supplemented with yacon flour in rats on high-fat diet[J].Journal of Functional Foods,2018,49(4):447-457.
[84]SILVA V L,COSTA M P,VIEIRA C P,et al.Biogenic amine formation during fermentation in functional sheep milk yogurts[J].Journal of Dairy Science,2019,102(10):8704-8709.
[85]VIANNA F S,CANTO A C V C S,DA COSTALIMA B R C,et al.Development of new probiotic yoghurt with a mixture of cow and sheep milk:Effects on physicochemical,textural and sensory analysis[J].Small Ruminant Research,2017,149(2):154-162.
[86]WENDORFF W L.Freezing qualities of raw ovine milk for further processing[J].Journal of Dairy Science,2001,84(6):E74-E78.
The Composition and Nutrition Characteristics in Sheep Milk