典型链格孢霉毒素的污染现状与毒理学性质研究进展

杨玉莲1,周鸿媛1,2,刘虫虫1,张宇昊1,2,马 良1,2*

1 西南大学食品科学学院 重庆 400715 2 川渝共建特色食品重庆市重点实验室 重庆 400715)

摘要 链格孢霉毒素是链格孢霉菌产生的次级代谢产物,在谷物、果蔬、坚果、油料作物等农作物和农产品中污染广泛,对人和动物有不同程度的急性毒性、遗传毒性、生殖发育毒性等,然而,现有的污染水平、膳食暴露量及毒效应等资料有限且研究系统性不强,安全风险评估的理论支撑薄弱。基于此,本文系统梳理了典型链格孢霉毒素的污染现状及其毒理学性质,旨在为进一步评估其暴露水平,开展安全性评价,科学制定限量标准与法规提供较为全面、系统的理论依据。

关键词 链格孢霉毒素;污染;限量;毒代动力学;毒性作用

链格孢霉毒素(Alternaria toxins)是链格孢霉菌(Alternaria species)产生的有毒次级代谢产物,根据结构不同可分为五大类:1)二苯-α-吡喃酮衍生物,如交链孢酚(Alternariol,AOH)、交链孢酚单甲醚(Alternariol monomethyl ether,AME)、交链孢烯(Altenuene,ALT)等;2)四氨基酸衍生物,如细交链孢菌酮酸(Tenuazonic acid,TeA)和异细交链孢菌酮酸(iso-Tenuazonic acid,iso-TeA);3)苝醌及其衍生物,如交链孢毒素(Altertoxin Ⅰ,II,Ⅲ,ATXs)、ALP (Alterperylenol) 毒素、STTX-Ⅰ和STTX-Ⅲ(Stemphyltoxin Ⅰ,Ⅲ)毒素;4)氨基戊醇酯类化合物,如AAL 毒素(Alternaria alternata f.sp.lycopersici toxins),包括AAL-TA 和AAL-TB;5)杂环类化合物,如腾毒素(Tentoxin,TEN)[1-2]。因链格孢霉菌适宜的生长温度(4~35 ℃)和水分活度(0.88~0.99)范围广,且极易在潮湿的环境中感染抗性较弱的农作物并生长、产毒,故链格孢霉毒素污染范围广,污染程度高[3]。目前,在谷物及其制品、果蔬及其制品、油料作物及其制品等中常有链格孢霉毒素检出。其中,小麦和番茄受污染最为严重[4],在意大利、中国等地的番茄样品中阳性率甚至高达100%[5-6]。此外,橄榄[7]、柑橘[6]、苹果[8]、葡萄[9]、甜椒[10]、无花果[11]、食用油[12]、葡萄酒[13]等也偶有检出。研究表明,链格孢霉毒素主要在肠道被吸收,具有急性毒性、细胞毒性、遗传毒性、致癌性等,可通过食物链富集在人和动物体内而危害健康[14]。链格孢霉毒素因污染广泛且存在毒性作用,故被确认为威胁人类和动物健康的重要风险因子,也是影响农产品经济价值和食品质量安全的潜在问题之一。

基于此,欧洲食品安全局 (European Food Safety Authority,EFSA) 于2011年首次对食品和饲料中存在的链格孢霉毒素展开安全评估,并建议将其列为公共卫生需高度关注的问题之一[4]。EFSA 根据现有的饮食暴露数据认为,AOH、AME、TeA、TEN、ALT 应作为食品中需高度关注的链格孢霉毒素,并建议使用毒性学关注阈值(threshold of toxicological concern,TTC) 评估其对机体健康的影响程度。随后,EFSA 根据现有的食品消费数据(19 个国家,35 种饮食调查)建立了欧洲食品消费综合数据库,并对成年人(18~65 岁,共30 788人)进行了膳食暴露评估,结果发现链格孢霉毒素的平均慢性膳食暴露可能已超过相应的TTC值[15]。2016年,EFSA 向各相关方收集链格孢霉毒素在食品和饲料中的污染数据,以考虑设定其在食品中的安全限量。然而,目前评估链格孢霉毒素的膳食暴露方法是基于代表性食品污染数据与食品消费数据相结合,忽略了食品基质的多样性,人群对食品消费量的不确定性,毒代动力学和生物利用度的差异性等影响因素。世界范围内对链格孢霉毒素的毒理学数据和风险评估都十分有限,相关限量标准和法规也极为缺乏。

1 链格孢霉毒素的污染与限量标准

1.1 链格孢霉毒素的污染情况

链格孢霉菌广泛存在于空气和土壤中,95%以上为兼性寄生菌,在田间、运输及贮藏过程中可通过入侵农作物气孔、皮孔、表皮微裂孔而寄生产毒[16]。2016年,EFSA 对来自欧洲的7 916 份食物样本进行检测分析,将受链格孢霉毒素污染的样品分为15 大类,即谷物及其制品、蔬菜及其制品、含淀粉的根茎和块茎、坚果豆类和油籽、水果及其制品、乳制品、糖、动植物油、果蔬汁、酒精饮料、香辛料和调味品、婴幼儿食品、特殊营养食品、速食、零食甜点,其中谷物、番茄及其制品、水果和坚果的污染水平相对较高[15]

TeA 是链格孢霉菌自然侵染宿主后产生的主要毒素,也是污染水平最高的链格孢霉毒素[7]。在四川省的264 份小麦及其制品中TeA 的检出率高达97.7%,污染量为1.29~111.0 μg/kg[17]。在甜椒[10]、葵花籽[11]、啤酒[18]中TeA 的检出率均超过80%。因食品干制过程会造成TeA 富集,故TeA 在果蔬类干制品、坚果中也有较高的污染量。如Marianna 等[5]在意大利一批样品中发现新鲜番茄(n=8)的平均污染量为0.81 mg/kg,而番茄干(n=10) 的最高浓度可达81.59 mg/kg,样本量相对较少。AOH 和AME 因具有亲脂性而更易污染油料作物 [19],其中油籽和植物油是其主要污染物[15]。Bansal 等 [12] 在100 份印度常用食用油中检测到AOH 和AME 的阳性率分别为34%和35%,其中葵花油的检出率最高(50%),大豆油的污染水平最高 (2.78~1 421.8 μg/kg)。小粒谷物中也常有AOH 和AME 检出。例如,在挪威的20 份小麦、28份燕麦和28 份大麦样品中,AOH 和AME 的阳性率均在80%以上,并且燕麦中AOH 的最高浓度可达449 μg/kg[20]。在欧洲的99 份小麦和106 份大麦样品中,AOH 和AME 的阳性率分别高达98%和99%[15]。在斯洛文尼亚的433 份谷物样品中,AOH和AME 的平均含量可达156 μg/kg 和153 μg/kg[21]。不仅如此,AOH 和AME 在番茄酱[6]、苹果酱[8]、樱桃罐头[22]、葡萄酒[23]等果蔬制品中也有少量检出,污染水平低于TeA。此外,在谷物制品、果蔬制品中偶有TEN 和ALT 检出,污染量相对较低。典型链格孢霉毒素在食品基质中的污染情况详见表1。

表1 典型链格孢霉毒素在食品中的污染情况
Table 1 Contamination of typical Alternaria toxins in foodstuffs

食品基质毒素样本数(n)检出率/%污染量/μg·mL-1参考文献小麦及其制品AOH [17],[20],[24]AME TeA TEN ATX-Ⅰ292 292 292 330 28 87.33 92.81 81.85 85.15 96 0.50~305 0.15~10.8 0.50~111 0.10~57.7<15.7大麦AOH AME TeA TEN 60 60 60 20 80.77 14.71 36.4 25 368~1 689 384~6 812 633~3 678<0.4[20],[25]燕麦AOH AME TeA TEN ATX-Ⅰ69 69 69 69 28 81.16 86.96 86.96 89.86 96 23~449 4.3~177 26~82 1.0~3.6<36.1[4],[20]杂谷AOH AME TeA TEN ALT 271 271 271 271 6 90.04 92.99 88.19 93.73 16.7 1.37~256 0.23~86 6.15~851 0.21~38<4.47[4],[26]

(续表1)

注:杂谷指供人类食用而未明确分类的谷物。

食品基质毒素样本数(n)检出率/%污染量/μg·mL-1参考文献番茄及其制品AOH [5],[6],[11],[27]AME TeA TEN ALT 111 49 172 31 28 17.11 69.39 56.98 83.9 50 2.5~8756 0.32~42 5.0~81 592 1.53~15.8<6.1甜椒及其制品AOH AME TeA ALT 15 8 38 15 83.33 75 100 93.33 1.6~1 110.8<35.7 4.3~8 248.5<139.9[10]鸡蛋及其制品AME5400.72~1.31[28]坚果AME TeA 36 10 91.67 80 1.1~17.5 5.0~1350[11],[15]植物油AOH AME TEN 95 95 7 35.79 36.84 28.57 5.18~938.3 2.78~1 421.8 1.8~3.4[12],[29]柑橘TeA36251.21~4.31[6]樱桃及其制品AOH [22]AME TeA ALT TEN 83 83 83 83 83 51.81 34.94 75.90 31.32 53.01 0.01~4.57 0.07~2.22 0.21~236.58 0.08~0.22 0.01~0.71无花果干AOH TeA 22 36 95.45 44.44 6.9~13 41~1728[4],[11]葡萄酒AOH AME TeA 52 47 13 63.46 74.47 100 0.66~28.86 0.03~18.05<7.5[4],[23]啤酒TeA9381.720.69~16.5[4],[18]果蔬汁AOH [4],[8,[30]AME TeA ALT 299 276 235 10 87.29 97.10 94.04 10 0.43~2.7 0.02~1.3 2.4~20.60<45.6

由于一种链格孢霉菌可能产生多种链格孢霉毒素,因此在同一食品基质中常有不同的链格孢霉毒素共存。Castaares 等[25]在大麦样品(n=60)中检测到AOH-TeA 共存率为31.67%。Ji 等[31]在婴幼儿谷物食品(n=820)中检测出AOH-TeA、AMETeA 共存率分别为5.6%,4.3%。何玲等[17]发现小麦及其制品(n=264)中AOH-AME-TeA-TEN、AMETeA-TEN、AOH-TeA-TEN、TeA-TEN 和AMETEN 的共存率分别为48.1%,36.0%,47.3%,97.7%和86.0%,其中AOH 与AME、TeA 与TEN 的Spearman 相关系数分别为0.507,0.744,表明其共存的相关性较强。不仅如此,Li 等[8]在腐烂苹果中发现有5 种链格孢霉毒素(AOH、AME、TeA、ALT、TEN)共存,而Puntscher 等[32]在番茄酱、葵花籽油、小麦粉中发现共存的链格孢霉毒素(AOH、AME、TeA、ALT、TEN、ATX-I、ALP) 甚至高达7 种。目前,有关链格孢霉毒素在食品中的暴露数据多为单一毒素,当与有害化学物质共存时,受暴露剂量、作用靶点、毒性机制等影响,产生协同或拮抗作用,从而改变毒性。因此在普查链格孢霉毒素的污染水平时不能忽略其共存的情况。

1.2 链格孢霉毒素的暴露水平和限量标准

饮食习惯、个体差异等因素导致不同人群或个体的链格孢霉毒素暴露水平不同。根据EFSA的慢性饮食暴露调查评估,婴幼儿和素食主义者因大量摄食谷物类食品,故链格孢霉毒素的饮食暴露风险较高,又因婴幼儿营养摄入单一且机体代谢能力较低而成为暴露水平最高的人群[15,31]。近期,在2 212 份北京成年人尿液样本中发现,超过98%的样本中至少含有1 种链格孢霉毒素,AME的检出率最高(96.0%),其次是TeA(70.5%),表明我国人群因膳食途径而接触链格孢霉毒素[33]。目前,因缺乏全面的毒理学数据,链格孢霉毒素在食品与饲料中的限量标准与法规仍未颁布,我国仅在2015年5月发布了《出口水果、蔬菜中链格孢霉毒素的测定 液相色谱-质谱/质谱法》,规定在部分果蔬中AOH、AME、TEN、ALT 的定量限为0.01 mg/kg。基于目前的风险评估数据,EFSA 规定具有遗传毒性的AOH 和AME 的TTC 值为2.5 ng/kg bw/d,非遗传毒性毒素TeA 和TEN 的TTC值为1 500 ng/kg bw/d[6],并指出欧洲人群AOH 和AME 的每日摄入量可能严重超过TTC 值[15]。2019年6月,欧盟委员会制定了关于AOH、AME、TeA的建议草案,提出在番茄制品、芝麻、葵花籽、葵花油以及婴幼儿谷物制品中AOH 和AME 的基准设定为5~30 μg/kg,TeA 为100~500 μg/kg[14]。然而,建议基准设定值并不能完全等同于食品的安全基准值,今后还需持续关注慢性膳食暴露对人类健康的影响。

2 链格孢霉毒素的毒代动力学

链格孢霉毒素进入人和动物体后,会穿过肠道屏障进入血液循环到达靶器官,其毒性作用受体内吸收、分布、代谢和排泄(ADME)过程的影响,因此开展链格孢霉毒素的毒代动力学研究对评估其潜在靶器官和相关安全浓度至关重要。目前有关链格孢霉毒素毒代动力学的研究报道还较为缺乏,仅涉及AOH、AME、ALT、ATX-II、STTXIII 和TeA[1],且并不全面,相关代谢途径如图1所示。

图1 链格孢霉毒素的代谢途径[1]
Fig.1 Metabolism pathway of Alternaria toxins[1]

注:1.UGTs:尿苷-5,-二磷酸葡萄糖醛酸转移酶;2.SULTs:硫酸基转移酶;3.GTs:糖基转移酶;4.COMT:儿茶酚氧位甲基转移酶;5.CYPA1A、CYP3A4:细胞色素P450 酶。

2.1 AOH、AME、ALT 的毒代动力学

体外Caco-2 细胞跨膜转运试验表明,20 μmol/L 的AOH 和AME 作用3 h 后细胞吸收率分别为25.8%,7.1%,并且在肠道细胞中的吸收和转运均与浓度呈正相关[34]。进入机体后,AOH 和AME 会激活CYP450 家族I 相代谢酶,在C-2、C-4、C-8、C-10 处引入羟基基团(-OH),从而降低其亲脂性和细胞吸收率。经II 相代谢后,AOH 和AME 可与葡萄糖苷/硫酸盐共价结合,AOH 代谢为AOH-3-葡萄糖苷 (AOH-3-G)、AOH-7-葡萄糖苷 (AOH-7-G)、AOH-9-葡萄糖苷 (AOH-9-G)、AOH-9-二葡糖苷(AOH-9-DG),AME 代谢为AME-3-葡萄糖苷(AME-3-G)、AME-3-丙二酰基葡萄糖苷(AME-3-MG)、AME-3-硫酸盐(AME-3-S)等[35-37]。Schuchardt 等[38]发现,AOH 主要在NMRI 小鼠的胃肠道被吸收,24 h 后约90%从粪便排出,9%从尿液排出,血液中检出率不超过0.06%,在粪便中检测到4 种I 相代谢产物(2-/4-/8-/10-OH-AOH),检出率为85%~91%。血液中则有3 种I 相代谢产物(2-/4-/10-OH-AOH)。与之不同,Puntscher 等[2]发现AOH 和AME 在SD 大鼠尿液中的排泄率相近(6%~10%),粪便中AME 含量较高(87%),而AOH 较低(9%)。由此可知,AOH 和AME 大多以原型或通过引入亲水性基团增加排泄率而被排出体外,其吸收和代谢除了受机体酶的影响外,还受品系、物种或个体差异的影响。就ALT 而言,一部分可在机体I 相代谢时,在C-4、C-8、C-10 位引入-OH,促进其代谢;另一部分还可通过与肠道微生物相互作用而被排出体外,其吸收和排泄情况尚不清楚[39-40]

2.2 ATX-II 和STTX-III 的毒代动力学

ATX-II 和STTX-III 可经I 相代谢去环氧化,分别生成ATX-I 和ALP[41]。Fleck 等[42]发现,在Caco-2 细胞跨膜转运试验中ATX-I 和ALP 的细胞吸收率和肠道渗透性均比其原型毒素高。此外,Puntscher 等[2]在体内实验中发现,SD 大鼠食用含有ATX-II 和STTX-III 的复合饲料后,其尿液和粪便中均检测到代谢物ATX-I (0.5%~15%)和ALP(0.2~3%),而经β-葡萄糖醛酸酶/芳基硫酸酯酶处理后,ATX-I 和ALP 分别增加了25%和14%,检测不到其原型毒素。综上表明,ATX-II 和STTX-III 在肠道中的吸收性较差,主要经机体I相代谢提高其亲水性和吸收率后以代谢物的形式被排出,或经II 相代谢以共轭物形式被排出,具体的II 相代谢途径还需进一步探究。

2.3 TeA 的毒代动力学

迄今为止,还未有关于TeA 在体内代谢的相关报道。现有研究表明,TeA 的生物利用度较高,受共消化食物成分和肠道微生物的影响较小,在Caco-2 细胞中易被吸收,其转运速度受浓度和时间的影响较小,进入机体后主要在胃肠道被吸收,大部分经尿液排出,6 h 和24 h 的尿液排泄率分别为54%~81%,87%~93%[2,34,43-44]

3 链格孢霉毒素的毒性作用

3.1 AOH 和AME 的毒性作用

AOH 和AME 在体内、外都有明显的毒性。小鼠实验表明,AOH 和AME 可引起小鼠发育不良、体重降低、呼吸困难、胃痉挛、内脏坏死等[45-47]。体外试验表明,AOH 和AME 的细胞毒性在不同的哺乳动物细胞系中呈高度的异质性,这为有效预测AOH 和AME 的靶器官及其毒性机制提供了基础。在人结肠癌细胞(Caco-2,3.125~100 μmol/L;HT-29,25~50 μmol/L;HCT116,10~200 μmol/L)、人肝癌细胞(HepG2,10~50 μmol/L)、人食管鳞癌细胞(KYSE510,1~50 μmol/L)、仓鼠肺细胞(V79,5~20 μmol/L)、小鼠巨噬细胞(RAW 264.7,15~30 μmol/L)中,AOH 和AME 会抑制细胞活性,损伤细胞正常形态,均有剂量-效应关系,其毒作用机制与细胞氧化应激、抗氧化防御失衡有关[48-52]。AOH 和AME 可作为细胞色素P450 酶(CYP450)的作用底物,依赖芳香烃受体(AhR)影响CYP1A1的正常表达,活化转录因子Nrf2,刺激Nrf2 与细胞核内的ARE 特异性结合,启动荧光素酶表达,促进活性氧(ROS)产生,并通过线粒体途径改变线粒体通透性转换孔 (PTP) 和线粒体膜电位(MMP),降低线粒体活性,激活半胱氨酸蛋白酶(caspase-3/-9),促进p53 和Bcl-2 基因表达,使细胞周期停滞在G2/M 或S 期,诱导细胞凋亡[49-50,53-54]。不仅如此,AOH 和AME 是最早被发现具有遗传毒性的链格孢霉毒素,因为AOH 和AME 可以充当DNA 拓补异构酶I 和II 的抑制剂,阻碍拓补异构酶在DNA 复制和转录过程中的释放,稳定DNA-拓补异构酶复合物,抑制DNA松弛化,刺激DNA 双链断裂和微核产生[55-56]。AOH和AME 还可直接与NIH/3T3 细胞的DNA 结合,激活c-ras、c-mys 等致癌基因,引起细胞恶性增殖,产生潜在致癌性[57]。此外,因AOH 结构与天然雌激素相似而具有生殖发育毒性,AOH 能与雌激素受体 (ER) 结合,激活ER-α 和ER-β,影响CYP1A1、HSD3B、p450scc 等酶的正常表达,促进胆固醇和雄烯二酮分别转化为孕稀酮醇和雌二醇,并使其含量提高2~3 倍,引起类固醇激素代谢紊乱,影响胚胎从受精卵到囊胚期的发育,最终导致胚胎退化,胎重降低[1,58-59]。除上述主要毒性外,AOH 和AME 还会干扰机体免疫系统,可通过NF-κB 通路抑制树突状表面受体蛋白(CD11b、CD80、CD86)、炎症因子(TNF-α、IL-1β、IL-6、IL-8)、基质金属蛋白酶(MMP-2、MMP-9)的表达,影响单核细胞(THP-1,10~60 μmol/L)向巨噬细胞分化以及巨噬细胞 (RAW 264.7,15~30 μmol/L;THP-1,7.5~15 μmol/L)的黏附、迁移、吞噬等功能,从而破坏机体屏障,导致免疫失调[52,60-62]。另外,AOH(50~500 nmol/L)还可诱导环氧化酶-2(COX-2)表达以及前列腺素E2(PGE2)的分泌,增加EP2受体与环磷酸腺苷偶联,激活cAMP/p-CREB 信号通路,引起炎症反应[63]

因同一食品基质中可能有多种链格孢霉毒素共存的情况,故AOH 和AME 的联合毒效应同样值得关注。AOH 和AME(1∶1)联合处理HCT-116人结肠癌细胞(25 μmol/L)、Caco-2 人结直肠腺癌细胞细胞(3.125~30 μmol/L)24 h,其联合毒性作用因染毒剂量的不同而表现为加和或协同作用[48,64]。另外,在Ishikawa 人子宫内膜癌细胞为模型的体外试验中,当AOH 与双酚A、玉米赤霉烯酮和α-玉米赤霉烯醇分别以5∶1,500∶1 和250:1 比例混合作用细胞时,类雌激素效应均呈协同增强趋势[65-66]

3.2 TeA 的毒性作用

TeA 有明显的急性毒性,体外试验表明TeA可抑制小鼠胚胎细胞(NH/3T3,12.5~400 μg/mL)、仓鼠肺细胞 (CHL,12.5~400 μg/mL)、人肝细胞(LO-2,12.5~400 μg/mL)、Caco-2 细胞 (200~250 μmol/L)的细胞活力,并呈剂量-效应关系[67-68]。动物实验表明,TeA 可导致大鼠呕吐、腹泻、出血,甚至死亡,其LD50 为76~162 mg/kg bw(静脉注射)和81~209 mg/kg bw(灌胃),也会引起狗、猴子胃肠道出血等,其作用机制与TeA 可抑制核糖体活性,阻碍蛋白质的合成和释放有关[69-70]。此外,TeA还有一定的潜在致癌性,Swiss 小鼠连续每天口服低剂量TeA (25 mg/kg bw/d)3 个月后体重明显降低,10 个月时可观察到食管黏膜细胞出现癌前病变[46]

TeA 与AOH、AME、TEN 等其它链格孢霉毒素共存的相关性较高,并可能与其它食源性毒素共存,需重视其联合毒性作用的研究,目前相关研究较为缺乏。Sauer 等[71]用含AOH、AME、ALT 的饲料混合物处理雏鸡和大鼠14 d 后无明显毒性症状,而加入145 μg/g 的TeA 后致死率分别为50%和100%。在HT29 细胞中AOH-AME-TeA 混合物引起的DNA 损伤比用同浓度的AOH/AME/TeA单独处理后更严重,表明TeA 可能与其它链格孢霉毒素产生协同作用[72]。与之相反,TeA(1~250 μmol/L)与脱氧雪腐镰刀菌烯醇/雪腐镰刀菌烯醇(10 μmol/L)共同处理Caco-2 细胞24 h 后出现轻微拮抗作用[67],推测与TeA、DON、NIV 通过竞争同一受体而抑制蛋白质的合成有关。

3.3 其它链格孢霉毒素的毒性作用

Bhagat 等[73]发现ATL 对斜纹夜蛾幼虫有致死性,其机制与ALT 可作为乙酰胆碱酯酶抑制剂引起突触处乙酰胆碱浓度增加有关。此外,ALT 可形成类似对苯二酚结构的氧化产物,与DNA 发生交联作用,导致DNA 断裂,然而,是否具有遗传毒性还需进一步研究[69]

Fleck 等[3]提出,以ATX-Ⅱ和STTX-III 为代表的苝醌类链格孢霉毒素可能具有比AOH 和AME 更强的遗传毒性和诱变性,可通过自身的环氧基团与DNA 形成加合物,作用于甲酰胺嘧啶-DNA 糖基化酶(FPG)位点,诱导单链/双链DNA断裂[89]。此外,低浓度ATX-Ⅱ可显著抑制KYSE510 细胞 (0.2 μmol/L) 和HT-29 细胞(0.5 μmol/L)的细胞活性,浓度升至10 μmol/L 时细胞存活率几乎为零,这是因为ATX-Ⅱ可上调CYP1A1 的表达,诱导ROS 生成,进而产生细胞毒性[74]。ATX-Ⅱ还能降低人结肠上皮细胞(HCEC-1CT)的迁移能力和膜流动性,阻碍细胞运动,破坏肠道细胞屏障[75]。Vejdovszky 等[76]在HepG2 细胞中还发现ATX-Ⅱ(7.3 μmol/L)的EC50 远小于AOH(51.4 μmol/L),且二者具有协同作用,这和参与调控细胞凋亡的基因miR-224、miR-29a 显著上调密切相关。

如表2所示,目前关于链格孢霉毒素的毒性研究以体外试验为主,相关的分子机制和作用靶点受食品基质和体内各种因素调节的影响暂不明确,还需对其深入研究。

表2 典型链格孢霉毒素的毒性作用及机理
Table 2 Toxicity and mechanism of typical Alternaria toxins

献文考参[49],[55],[53][49][61][49],[78][77][51][54][55][52][60][63][57][58][59][63][62][45][50][49]理机及用作性毒度浓理处裂断DNA激刺生产ROS导,诱性活酶和达表的CYP1A1制,抑低降性活胞细10~50 μmol/L进促Nrf2/ARE过,通加增性活,GST少减,GSH、γGCL、GSTA2 GSTA1调下1~50 μmol/L产间中DNA-II酶构异扑拓定,稳性活、IIβ、IIα I酶构异补拓制,抑生产ROS率裂断DNA加,增物和达表的Erk1/2和Akt响,影激应化氧导,诱性活胞细低,降态形胞细变改0.001~100 μmol/L 9)和(MMP-2 2酶白蛋属金过,通期、S G2/M在滞停期周胞,细性整完DNA附黏和移迁胞细响)影(MMP-9性活体粒线和性活胞细低,降生产ROS进,促达表的CYP1A1导诱AhR赖依10~50 μmol/L及以IL-1和、IL-6 IL-8调,上裂断,DNA加增LPO和,ROS低降性活胞细3.125~100 μmol/L应反症炎起,引、miR-155、miR-125b miR-16裂断,DNA期G2/M在滞停期周胞,细变突HPRT导诱5~50 μmol/L亡凋胞细激刺加增,ROS低降,MMP加增性活、Bcl-2、p53 9和caspase 3 10~50 μmol/L核微生,产裂断链双DNA激,刺成合与弛松的DNA制,抑低降性活酶构异补拓1~50 μmol/L,细低降力能吞,胞调上、IL-6,THF-α加增性活、MHCII、CD-11b、CD86 CD80 15~30 μmol/L变改状形胞化分胞细噬巨向胞细核单制,抑、THF-α CD71调,下、CD11b CD14调上10~60 μmol/L殖增胞细导,诱CREB活,激cAMP激,刺、EP4、EP2、PGE2 COX-2调上50~500 nmol/L殖增性恶胞细致c-mys,导c-ras 和因基癌致活激10 μg/mL,NR0B1调,下、HSD3B2、MC2R、CYP19、CYP11B2、CYP21、CYP17 CYP1A1调上0.1~1 000 ng/mL成合酮孕和醇二雌加,增合结体受素激孕和酮孕及以达表体受酮孕进促泌分与成合酮孕少,减谢代础基胞细制,抑达表、Gapdh、3-β-HSD p450scc低降0.8~12.8 μmol/L症炎发,引生、增肿水肤皮只12.5~50 μg/IL-8和、IL-1β CXCL1鼠小生新制,抑低降重、胎化退胎胚期胚、囊伤损化氧、5 mg/kg bw/d、3 1调失疫免致,导达表亡、死低降重、体血出室、脑挛痉胃100~400 mg/kg bw/d,C素色胞细放,释MMP加,增放开PTP进促径途体粒线过,通生产ROS进促10~200 μmol/L亡凋胞细起,引达表p53进,促、9 caspase3活激性活体粒线和胞细低,降生产ROS导,诱达表CYP1A1进促10~50 μmol/L)间时理处型模验试24 h胞细HepG2,48 h 24胞细HT29,48 h 24胞细184A1 24 h胞细KYSE510,72 h,48 24胞细Caco-2 24 h胞细V79,48 h 24胞细HCT116,48 h,24,16 6胞细A431,48 h,24 6胞细RAW264.7,48 h 24胞细THP-1 6 h胞细PMK 24 h 胞NIH/3T3 细24 h H295R胞 24 h细粒颗巢卵原猪肤皮抹(涂24 h鼠小化白士瑞4 d鼠小性雌ICR 3 d 鼠DBA/2 小,48h 24胞细HTC116 24 h胞细HepG2素毒AOH AME

(续表2)

献文考参,[55],[53][49][49][51][55][57][59][46][47][59][67][68][69][46][69][49],[79][51][76][80][51][45][79]理机及用作性毒、γG-、GSTA2 GSTA1调上径途Nrf2/ARE过通,并性活的、II I酶构异补拓制抑加增率频裂断,DNA核胞细到位易,Nrf2少减,GSH加增,ROS CL性整完DNA伤,损生产ROS进,促CYP1A1调上性整完DNA伤,损期G2/M在滞停期周胞,细变突因基HPRT起引裂断DNA进,促性活、IIβ、IIα I酶构异补拓制,抑伤损化氧变癌胞细成合酮孕少,减达表、3-β-HSD p450scc低,降、HSD3B CYP11A1调下加增比质,核乱紊性、极性异核胞,细良不育发低降重、胎力无肢、后难困吸、呼睡、嗜死坏脏内性活胞细制抑性活体粒线和力活胞细低降力活胞细低降放释和成合的质白蛋碍,阻性活的体糖核制抑亡、死血出性烂糜腔,腹速加跳、心血出道肠、胃泻、腹吐呕变癌胞细皮上膜黏管,食良不育发烂糜脏、脾肿水肌、心低降重体ROS激,刺达表CYP1A1导,诱、miR-5583_5p miR-1323调,下力活胞细低降生产DNA加,增性活酶构异扑拓制,抑点位感敏超酶Fpg于用作物和加DNA成形率频裂断裂断DNA及滞停期周胞细导,诱p53活,激性活II酶构异补拓制抑功体粒线响,影NF-κB调,下物化氧超体粒线加,增化氧过质脂起引ROS生产能裂断DNA加,增变突HPRT导,诱物和加成形DNA与死致,变突点位因基HPRT起,引物和加DNA成,形性活II酶构异扑拓DNA制抑性整完DNA伤,损复修除切酸核响影度浓理处25~200 μmol/L 5~50 μmol/L 20~40 μmol/L 1~50 μmol/L 12.5~50 μg/mL 0.8~12.8 μmol/L 100 mg/kg bw d 200 mg/kg bw 6.4~100 μmol/L 200~250 μmol/L 12.5~400 μg/mL 12.5~400 μg/mL) 398 mg/kg bw 25~50 mg/kg bw) 20 mg/kg bw 25 mg/kg bw/d 1.25~2.5 mg/kg bw/d 0.01~10 μmol/L 0.5~50 μmol/L 0.5~20 μmol/L 0.1~1 μmol/L 0.5~0.75 μmol/L 200 mg/kg bw 0.25~5 μmol/L服服间时理处,48 h 24 24 h 24 h 48 h 24 h 24 h月个10)腔(腹1 次24 h 48 h,72 h,48 24 72 h、口脉(静次1、口脉(静次3月10 个21 d 24 h 24 h 24 h 2 h 24 h 3 d 24 h胞胞型模验试素毒胞细HT29胞细KYSE510胞细V79胞细A431胞细NIH/3T3细粒颗巢卵原猪鼠小化白士瑞鼠仓金期娠妊细粒颗巢卵原猪TeA Caco-2胞细NH/3T3胞细CHL鼠大狗子猴鼠小化白士瑞鸡航来白胞细KYSE510 ATX-Ⅱ胞细HepG2胞细HT29胞细THP-1胞细V79鼠小CD-1胞细STTX-III V79

4 结语

链格孢霉毒素作为一种新兴真菌毒素,受到全球各国的广泛关注。本文梳理近十年来有关链格孢霉毒素污染情况和毒性作用的研究发现。链格孢霉毒素污染范围广泛,尤其是在小麦和番茄中污染水平较高,易在机体中被肠道细胞吸收,主要以原型或I 相代谢物的形式被排出,可引起机体氧化应激、激素紊乱、炎症反应、免疫失调等,部分链格孢霉毒素甚至会破坏DNA 完整性,产生遗传毒性和潜在致癌性,严重威胁人和动物的健康。然而,目前对链格孢霉毒素的毒性作用研究仍较为缺乏,且多以哺乳动物细胞为试验模型,体内实验较少,而有关其人体暴露水平、毒代动力学过程、毒素间相互作用关系、靶器官及毒性机制等的报道匮乏,无法开展全面的安全性评价,导致其限量标准及相关法规的颁布迟滞,无法进行有效的食品安全监管。因此,亟需通过监测链格孢霉毒素的长期膳食暴露水平,建立生理药代动力学(PBPK)模型,或结合稳定同位素标记辅助代谢组学等方法,探究其在机体内的代谢过程,同时还可利用组学技术、分子生物学技术和生物信息学等方法,系统研究链格孢霉毒素在不同试验模型中的单一/联合毒性及其作用机理,为进一步丰富其毒理学资料,科学制定其在食品和饲料中的限量标准以及食品安全政策提供理论依据。

参 考 文 献

[1]CHEN A Q,MAO X,SUN Q H,et al.Alternaria mycotoxins:An overview of toxicity,metabolism,and analysis in food[J].Journal of Agricultural and Food Chemistry,2021,69(28):7817-7830.

[2]PUNTSCHER H,HANKELE S,TILLMANN K,et al.First insights into Alternaria multi-toxin in vivo metabolism[J].Toxicology Letters,2018,301:168-178.

[3]CRUDO F,VARGA E,AICHINGER G,et al.Cooccurrence and combinatory effects of Alternaria mycotoxins and other xenobiotics of food origin:Current scenario and future perspectives [J].Toxins,2019,11(11):640.

[4]EFSA Panel on Contaminants in the Food Chain(Contam).Scientific opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food[J].EFSA Journal,2011,9(10):2407.

[5]MARIANNA S S,TERESA G,FRANCESCA G,et al.Contamination of fresh and dried tomato by Alternaria toxins in southern Italy[J].Food Additives &Contaminants:Part A,Chemistry,Analysis,Control,Exposure & Risk Assessment,2019,36(5):789-799.

[6]ZHAO K,SHAO B,YANG D J,et al.Natural occurrence of four Alternaria mycotoxins in tomatoand citrus-based foods in China[J].Journal of Agri cultural and Food Chemistry,2015,63(1):343-348.

[7]FERNÁNDEZ P,ANDREA P.Alternaria species and their associated mycotoxins[J].Methods in Molecular Biology,2017,1542:13-32.

[8]LI Y P,ZHANG X N,NIE J Y,et al.Occurrence and co-occurrence of mycotoxins in apple and apple products from China[J].Food Control,2020,118:107354.

[9]MIKUŠOVÁ P,SULYOK M,ŠROBÁROVÁ A.Alternaria mycotoxins associated with grape berries in vitro and in situ[J].Biologia,2014,69(2):173-177.

[10]GAMBACORTA L,MAGISTÀ D,PERRONE G,et al.Co-occurrence of toxigenic moulds,aflatoxins,ochratoxin A,Fusarium and Alternaria mycotoxins in fresh sweet peppers (Capsicum annuum) and their processed products[J].World Mycotoxin Journal,2018,11(1):159-174.

[11]LÓPEZ P,VENEMA D,MOL H,et al.Alternaria toxins and conjugates in selected foods in the Netherlands[J].Food Control,2016,69:153-159.

[12]BANSAL M,SAIFI I J,DEV I,et al.Occurrence of alternariol and alternariolmonomethyl ether in edible oils:Their thermal stability and intake assessment in state of Uttar Pradesh,India[J].Journal of Food Science,2021,86(3):1124-1131.

[13]BROGGI L,REYNOSO C,RESNIK S,et al.Occurrence of alternariol and alternariol monomethyl ether in beverages from the Entre Rios Province market,Argentina[J].Mycotoxin Research,2013,29(1):17-22.

[14]MUJAHID C,SAVOY M,BASLÉ Q,et al.Levels of Alternaria toxins in selected food commodities including green coffee[J].Toxins,2020,12(9):595.

[15]ARCELLA D,ESKOLA M,GÓMEZ RUIZ J A.Dietary exposure assessment to Alternaria toxins in the European population[J].EFSA Journal,2016,14(12):4564.

[16]LORENZINI M,ZAPPAROLI G.Characterization and pathogenicity of Alternaria spp.strains associated with grape bunch rot during post-harvest withering[J].International Journal of Food Microbiology,2014,186(1):1-5.

[17]何玲,秦忠雪,任琳,等.四川省市售小麦及其制品中链格孢霉毒素污染状况调查[J].预防医学情报杂志,2020,36(11):1433-1437.HE L,QIN Z X,REN L,et al.Investigation on contamination of Alternaria toxins from wheat and its products sold in Sichuan province [J].Journal of Pre ventive Medicine Information,2020,36(11):1433-1437.

[18]SCHEIBENZUBER S,DICK F,ASAM S,et al.Analysis of 13 Alternaria mycotoxins including modified forms in beer[J].Mycotoxin Research,2021(6):1-11.

[19]SIEGEL D,FEIST M,PROSKE M,et al.Degradation of the Alternaria mycotoxins alternariol,alternariol monomethyl ether,and altenuene upon bread baking[J].Journal of Agricultural and Food Chemistry,2010,58(17):9622-9630.

[20]UHLIG S,ERIKSEN G,HOFGAARD I,et al.Faces of a changing climate:Semi-quantitative multi-mycotoxin analysis of grain grown in exceptional climatic conditions in Norway[J].Toxins,2013,5(10):1682-1697.

[21]BABIČ J,TAVČARKALCHER G,CELAR F A,et al.Occurrence of Alternaria and other toxins in cereal grains intended for animal feeding collected in Slovenia:A three-year study[J].Toxins,2021,13(5):304.

[22]QIAO X T,YIN J,YANG Y J,et al.Determination of Alternaria mycotoxins in fresh sweet cherries and cherry-based products:Method validation and occurrence[J].Journal of Agricultural & Food Chemistry,2018,66(44):11846-11853.

[23]CARBALLO D,FERRER E,BERRADA H.Dietary exposure to mycotoxins through alcoholic and nonalcoholic beverages in Valencia,Spain[J].Toxins,2021,13(7):438.

[24]张洁,王谢,马青青,等.谷物中4 种交链孢毒素污染情况及检验方法探讨[J].江苏预防医学,2021,32(2):143-144,152.ZHANG J,WANG X,MA Q Q,et al.Contamination status and discussion of detection methods of 4 kinds of Alternaria toxins in cereals [J].Jiangsu Jour nal of Preventive Medicine,2021,32(2):143-144,152.

[25]CASTAARES E,PAVICICH M A,DINOLFO M I,et al.Natural occurrence of Alternaria mycotoxins in malting barley grains in the main producing region of Argentina[J].Journal of Food Quality,2016,100(3):1004-1011.

[26]GOTTHARDT M,ASAM S,GUNKEL K,et al.Quantitation of six Alternaria toxins in infant foods applying stable isotope labeled standards[J].Frontiers in Microbiology,2019,10:109.

[27]WALRAVENS J,MIKULA H,RYCHLIK M,et al.Validated UPLC-MS/MS methods to quantitate free and conjugated Alternaria toxins in commercially available tomato products,fruit and vegetable juices in Belgium [J].Journal of Agricultural and Food Chemistry,2016,64(24):5101-5109.

[28]SUN D L,QIU N N,ZHOU S,et al.Development of sensitive and reliable UPLC-MS/MS methods for food analysis of emerging mycotoxins in China total diet study[J].Toxins,2019,11(3):166.

[29]HANNES P,MARY-LIIS K,PHILIPP S,et al.Tracking emerging mycotoxins in food:development of an LC-MS/MS method for free and modified Alternaria toxins[J].Analytical and Bioanalytical Chemistry,2018,410(18):4481-4494.

[30]PRELLE A,SPADARO D,GARIBALDI A,et al.A new method for detection of five Alternaria toxins in food matrices based on LC-APCI-MS[J].Food Chemistry,2013,140(1/2):161-167.

[31]JI X F,XIAO Y P,WANG W,et al.Mycotoxins in cereal-based infant foods marketed in China:Occurrence and risk assessment[J].Food Control,2022,138:108998.

[32]PUNTSCHER H,COBANKOVIC I,MARKO D,et al.Quantitation of free and modified Alternaria mycotoxins in European food products by LC-MS/MS[J].Food Control,2019,102:157-165.

[33]QIAO X T,LI G,ZHANG J,et al.Urinary analysis reveals high Alternaria mycotoxins exposure in the general population from Beijing,China[J].Journal of Environmental Sciences,2022,118:122-129.

[34]赵凯.食品中交链孢毒素污染、生物利用及风险评估研究[D].北京:中国疾病预防控制中心,2015.ZHAO K.Natural occurrence,bioavailablity and risk assessment of Alternaria mycotoxins in foods[D].Beijing:Chinese Center for Disease Control and Prevention,2015.

[35]TIESSEN C,ELLMER D,MIKULA H,et al.Impact of phase I metabolism on uptake,oxidative stress and genotoxicity of the emerging mycotoxin alternariol and its monomethyl ether in esophageal cells[J].Archives of Toxicology,2017,91(3):1213-1226.

[36]SOUKUP S T,KOHN B N,PFEIFFER E,et al.Sulfoglucosides as novel modified forms of the mycotoxins alternariol and alternariol monomethyl ether[J].Journal of Agricultural and Food Chemistry,2016,64(46):8892-8901.

[37]SCHEIBENZUBER S,HOFFMANN T,EFFENBERGER I,et al.Enzymatic synthesis of modified Alternaria mycotoxins using a whole-cell biotransformation system[J].Toxins,2020,12(4):264.

[38]SCHUCHARDT S,ZIEMANN C,HANSEN T.Combined toxicokinetic and in vivo genotoxicity study on Alternaria toxins[J].EFSA Supporting Publications,2014,11(11).DOI:10.2903/sp.efsa.2014.EN-679.

[39]PFEIFFER E,HERRMANN C,ALTEMÖLLER M,et al.Oxidative in vitro metabolism of the Alternaria toxins altenuene and isoaltenuene[J].Molecular Nutrition & Food Research,2010,53(4):452-459.

[40]LEMKE A,BURKHARDT B,BUNZEL D,et al.Alternaria toxins of the alternariol type are not metabolised by human faecal microbiota[J].World Mycotoxin Journal,2015,9(1):1-10.

[41]JAROLIM K,FAVERO G D,ELLMER D,et al.Dual effectiveness of Alternaria but not Fusarium mycotoxins against human topoisomerase II and bacterial gyrase[J].Archives of Toxicology,2017,91(4):2007-2016.

[42]FLECK S C,PFEIFFER E,METZLER M.Permeation and metabolism of Alternaria mycotoxins with perylene quinone structure in cultured Caco-2 cells[J].Mycotoxin Research,2014,30(1):17-23.

[43]CRUDO F,AICHINGER G,MIHAJLOVIC J,et al.Gut microbiota and undigested food constituents modify toxin composition and suppress the genotoxicity of a naturally occurring mixture of Alternaria toxins in vitro[J].Archives of Toxicology,2020,94(10):3541-3552.

[44]李佳欣,李道亮,周鸿媛,等.荧光光谱法研究链格孢霉毒素TeA 与血清白蛋白的互作机理[J].食品工业科技,2022,43(8):288-295.LI J X,LI D L,ZHOU H Y,et al.Interaction mechanism between Alternaria mycotoxins TeA and serum albumin by fluorescence spectroscopy[J].Science and Technology of Food Industry,2022,43(8):288-295.

[45]PERO R W,POSNER H,BLOIS M,et al.Toxicity of metabolites produced by the ‘Alternaria’[J].Environmental Health Perspectives,1973,4:87-94.

[46]YEKELER H,BITMI S K,OZÇELIK N,et al.Analysis of toxic effects of Alternaria toxins on esophagus of mice by light and electron microscopy[J].Toxicologic Pathology,2001,29(4):492.

[47]POLLOCK G A,DISABATINO C E,HEIMSCH R C,et al.The subchronic toxicity and teratogenicity of alternariol monomethyl ether produced by Alternaria solani[J].Food & Chemical Toxicology,1982,20(6):899-902.

[48]FERNÁNDEZ -BLANCO C,FONT G,RUIZ M.Role of quercetin on Caco-2 cells against cytotoxic effects of alternariol and alternariol monomethyl ether[J].Food and Chemical Toxicology,2016,89:60-66.

[49]PAHLKE G,TIESSEN C,DOMNANICH K,et al.Impact of Alternaria toxins on CYP1A1 expression in different human tumor cells and relevance for genotoxicit[J].Toxicology Letters,2016,240 (1):93-104.

[50]BENSASSI F,GALLERNE C,DEIN O,et al.Mechanism of Alternariol monomethyl ether-induced mitochondrial apoptosis in human colon carcinoma cells[J].Toxicology,2011,290(2/3):231-241.

[51]FLECK S C,BURKHARDT B,PFEIFFER E,et al.Alternaria toxins:Altertoxin II is a much stronger mutagen and DNA strand breaking mycotoxin than alternariol and its methyl ether in cultured mammalian cells[J].Toxicology Letters,2012,214(1):27-32.

[52]SOLHAUG A,WISBECH C,CHRISTOFFERSEN T,et al.The mycotoxin alternariol induces DNA damage and modify macrophage phenotype and inflammatory responses[J].Toxicology Letters,2015,239(1):9-21.

[53]TIESSEN C,FEHR M,SCHWARZ C,et al.Modulation of the cellular redox status by the Alternaria toxins alternariol and alternariol monomethyl ether[J].Toxicology Letters,2013,216(1):23-30.

[54]BENSASSI F,GALLERNE C,DEIN O,et al.Cell death induced by the Alternaria mycotoxin Alternariol[J].Toxicology in Vitro,2012,26(6):915-923.

[55]FEHR M,PAHLKE G,FRITZ J,et al.Alternariol acts as a topoisomerase poison,preferentially affecting the IIα isoform[J].Molecular Nutrition & Food Research,2009,53(4):441-451.

[56]SOLHAUG A,ERIKSEN G S,HOLME J A.Mechanisms of action and toxicity of the mycotoxin alternariol:A review[J].Basic & Clinical Pharmacology & Toxicology,2016,119(6):533-539.

[57]LIU G T,QIAN Y Z,ZHANG P,et al.Etiological role of Alternaria alternata in human esophageal cancer[J].Chinese Medical Journal,1992,105(5):394.

[58]FRIZZELL C,NDOSSI D,KALAYOU S,et al.An in vitro investigation of endocrine disrupting effects of the mycotoxin alternariol[J].Toxicology and Applied Pharmacology,2013,271(1):64-71.

[59]TIEMANN U,TOMEK W,SCHNEIDER F,et al.The mycotoxins alternariol and alternariol methyl ether negatively affect progesterone synthesis in porcine granulosa cells in vitro[J].Toxicology Letters,2009,186(2):139-145.

[60]SOLHAUG A,KARLS?EN L M,HOLME J A,et al.Immunomodulatory effects of individual and combined mycotoxins in the THP-1 cell line[J].Toxicology in Vitro,2016,36:120-132.

[61]KOWALSKA K,HABROWSKA GÓRCZYN SKA D E,KOZIEŁ M J,et al.Mycotoxin alternariol(AOH) affects viability and motility of mammary breast epithelial cells [J].International Journal of Molecular Sciences,2021,22(2):696.

[62]HUANG C H,WANG F T,CHAN W H.Alternariol exerts embryotoxic and immunotoxic effects on mouse blastocysts through ROS-mediated apoptotic processes[J].Toxicology Research,2021,10 (4):719-732.

[63]BANSAL M,SINGH N,ALAM S,et al.Alternariol induced proliferation in primary mouse keratinocytes and inflammation in mouse skin is regulated via PGE2/EP2/cAMP/p-CREB signaling pathway[J].Toxicology,2019,412:79-88.

[64]BENSASSI F,GALLERNE C,OSSAMA S E D,et al.Combined effects of alternariols mixture on human colon carcinoma cells[J].Toxicology Methods,2015,25(1):56-62.

[65]AICHINGER G,PANTAZI F,MARKO D.Combinatory estrogenic effects of bisphenol A in mixtures with alternariol and zearalenone in human endome trial cells[J].Toxicology Letters,2020,319:242-249.

[66]VEJDOVSZKY K,HAHN K,BRAUN D,et al.Synergistic estrogenic effects of Fusarium and Alternaria mycotoxins in vitro[J].Archives of Toxicology,2017,91(3):1447-1460.

[67]VEJDOVSZKY K,WARTH B,SULYOK M,et al.Non-synergistic cytotoxic effects of Fusarium and Alternaria toxin combinations in Caco -2 cells [J].Toxicology Letters,2016,241:1-8.

[68]BING Z,SHENG Q.Environmental,genetic and cellular toxicity of tenuazonic acid isolated from Alternaira alternata[J].African Journal of biotechnolo gy,2008,7(8):29-34.

[69]FRAEYMAN S,CROUBELS S,DEVREESE M,et al.Emerging Fusarium and Alternaria mycotoxins:Occurrence,Toxicity and Toxicokinetics[J].Toxins,2017,9(7):228.

[70]吴春生,马良,江涛,等.链格孢霉毒素细交链格孢菌酮酸的研究进展[J].食品科学,2014,35(19):295-301.WU C S,MA L,JIANG T,et al.A review on tenuazonic acid,a toxic produced by Alternaria[J].Food Science,2014,35(19):295-301.

[71]SAUER D B,SEITZ L M,BURROUGHS R,et al.Toxicity of Alternaria metabolites found in weathered sorghum grain at harvest[J].Journal of Agricultural& Food Chemistry,1978,26(6):1380.

[72]SCHWARZ C,KREUTZER M,MARKO D.Minor contribution of alternariol,alternariol monomethyl ether and tenuazonic acid to the genotoxic properties of extracts from Alternaria alternata infested rice[J].Toxicology Letters,2012,214(1):46-52.

[73]BHAGAT J,KAUR A,KAUR R,et al.Cholinesterase inhibitor (Altenuene) from an endophytic fungus Alternaria alternata:optimization,purification and characterization[J].Journal of Applied Microbiology,2016,121(4):1015-25.

[74]SOLHUAG A,CATHRINE W,CHRISTOFFERSEN T E,et al.The mycotoxin alternariol induces DNA damage and differentiation of primary human macrophages[J].Toxicology Letters,2015,238(2):S219-S220.

[75]HOHENBICHLER J,SPINDLER V,PAHLKE G,et al.Immunomodulatory potential of combined Alternaria alternata mycotoxins in non-cancerous epithelial colon cells [J].Toxicology Letters,2021,350:160.

[76]VEJDOVSZKY K,SACK M,JAROLIM K,et al.In vitro combinatory effects of the Alternaria mycotoxins alternariol and altertoxin II and potentially involved miRNAs[J].Toxicology Letters,2017,267:45-52.

[77]SCHMUTZ C,CENK E,MARKO D.The Alternaria mycotoxin alternariol triggers the immune response of IL-1β-stimulated,differentiated Caco-2 cells[J].Molecular Nutrition & Food Research,2019,63(20):1900341.

[78]CELIA F,FONT G,RUIZ M.Alternariol-induced DNA damage,disturbance of antioxidant capacity and oxidative stress in Caco-2 cells[J].Toxicology Letters,2016,258(S):S249.

[79]FLECK S C,F SAUTER,PFEIFFER E,et al.DNA damage and repair kinetics of the Alternaria mycotoxins alternariol,altertoxin II and stemphyltoxin III in cultured cells[J].Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2016,799:27-34.

[80]FAVERO G D,HOHENBICHLER J,MAYER R M,et al.Mycotoxin altertoxin II induces lipid peroxidation connecting mitochondrial stress response to NF-κB inhibition in THP-1 macrophages[J].Chemical Research in Toxicology,2020,33(2):492-504.

Advanced Progress in Contamination Status and Toxicological Properties of Typical Alternaria Toxins

Yang Yulian1,Zhou Hongyuan1,2,Liu Chongchong1,Zhang Yuhao1,2,Ma Liang1,2*
1College of Food Science,Southwest University,Chongqing 400715 2Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing,Chongqing 400715)

Abstract Alternaria toxins,as the secondary metabolites produced by Alternaria species,are widely contaminated in crops and agricultural products such as cereals,fruits,vegetables,nuts,oil crops,etc.,which shows different degrees of acute toxicity,genetic toxicity,reproductive and developmental toxicity to humans and animals.However,the available studies of its contamination level,dietary exposure and toxic effects are still relatively limited and short of systematization,which making it difficult to carry out a comprehensive risk assessment.Therefore,this review systematically demonstrated the contamination status and toxicological profiles of typical alternaria toxins,aiming to provide a more comprehensive and systematic theoretical basis for the further assessment of exposure level of alternaria toxins,comprehensive safety evaluation,and scientific formulation of limit standards and regulations.

Keywords Alternaria toxins;contamination;limit standard;toxicokinetic;toxic effect

文章编号 1009-7848(2023)03-0376-14

DOI:10.16429/j.1009-7848.2023.03.038

收稿日期2022-06-08

基金项目国家自然科学基金项目(32001810,32072137,CSTB2022NSCQ-MSX1157)

第一作者杨玉莲,女,硕士生

通信作者马良 E-mail:zhyhml@163.com