益生菌功效性研究与评价的科学综述

(中国食品科学技术学会益生菌分会 北京 100048)

摘 要 益生菌是一类活的微生物,当摄取足够数量时对宿主健康有益。近年来,国内外益生菌产业蓬勃发展,深入挖掘并解析益生菌的功效与健康作用机制,实现益生菌对机体健康更加精准、有效和安全的支持,成为全球研究的热点及产业创新发展的主要方向。益生菌有益健康的作用具有菌株特异性,且需要对其功效性进行科学评价。目前国内外尚缺乏对益生菌功效性评价的统一标准。为此,中国食品科学技术学会益生菌分会在系统分析益生菌调节肠道菌群和免疫力研究现状的基础上,梳理全基因测序技术、体外试验、动物实验、人群试验及临床试验等评价方法,以及国内外相关标准与法规要求,结合专家研讨,提出五大科学观点,旨在为益生菌的科学研究、标准与法规制订、产业化应用及科学普及等方面提供参考。

关键词 益生菌;体外试验;动物实验;临床试验;肠道微生物

益生菌是一类活的微生物,当摄取足够数量时对宿主健康有益。“对宿主健康有益”是其核心特征之一。益生菌的有益健康作用需要经过科学的功效性评价。当以人体为对象时,其重要意义在于确定益生菌对人体健康的实际影响。益生菌功效性评价可以追溯到20 世纪70 年代。当时人们意识到某些微生物可以促进肠道内有益菌的生长,抑制病原菌的繁殖,并且对人类免疫系统有益。随着科学技术的发展,益生菌的功效逐渐被拓展,如改善胃肠道健康,调节机体免疫力,调节代谢等。目前,益生菌功效性评价的研究方法主要包括体外试验、动物实验和人体试验3 个层次,是其开发和应用的主要科学依据,对于提高益生菌及相关产品的市场竞争力,保护消费者健康和权益及促进益生菌产业高质量发展具有重要意义。

本文主要阐述了全基因测序技术、体外试验、动物实验、人群试验及临床试验等评价方法,以及国内外相关标准与法规要求,旨在为益生菌的科学研究、标准与法规制订、产业化应用及科学普及等方面提供参考。

1 益生菌功效性评价研究概述

自1857 年,法国微生物学家路易斯·巴斯德在显微镜下观察到啤酒液中的乳酸菌,此后近百年时间,对于乳酸菌的研究多集中于分类学鉴定和代谢产物测定方面。直至1942 年,乳杆菌被率先尝试用于滴虫性阴道炎患者治疗,并取得积极治疗效果[1]。1945 年,研究人员通过给恒河猴肌肉注射干酪乳杆菌的发酵因子,有效改善了动物贫血症状并提高了白细胞水平[2]。1965 年,美国科学家在《科学》杂志上发表的研究论文《益生菌——由微生物产生的生长促进因素》 中最先使用Probiotic(益生菌)这一术语来描述一种微生物促进其它微生物生长的作用[3]

目前,益生菌的相关研究已成为生命科学的前沿研究领域。通过综合数据库限制关键词检索发现,21 世纪之前,共计约500 篇益生菌功效相关的研究文献。从2000 年至2010 年间,相关研究文献数量增长至7 000 篇左右。近十年来,益生菌功效评价文献已接近40 000 篇,成为生命科学领域的研究热点之一。

基于菌株的分类学地位,开展功效研究的菌株主要集中于乳杆菌(Lactobacillus)、双歧杆菌(Bifidobacterium)、乳球菌(Lactococcus)、片球菌(Pediococcus)等乳酸菌类群。近年来,嗜黏蛋白阿克曼氏菌(Akkermansia muciniphila,AKK)、脆弱拟杆菌(Bacteroides fragilis)、凝结魏茨曼氏菌(Weizmannia coagulans)、布拉迪酵母(Saccharomyces boulardii)等,也受到越来越多研究者的关注。基于菌株功效研究,约一半以上的研究聚焦于菌株在肠道微生态调节和免疫方面的健康作用。

基于益生菌功效评价方法研究,研究人员通过体外试验,研究益生菌菌株对靶标代谢物的产生/降解/吸附效果,对特定病原菌的抑制/抵抗能力。同时,采用全基因组测序技术,完成菌株功能基因注释,从而预测菌株的潜在功能特性[4-6]。此后,将菌株应用于动物模型,如常见的果蝇、斑马鱼、小鼠、大鼠和灵长类等模式生物[7-9]。通过疾病模型的构建和多组学技术的联合使用,探究菌株在动物模型上的健康作用。在动物实验基础上,临床试验能够更加真实地评价益生菌对人体的健康作用,也是近年来国内外对益生菌功能评价达成共识性的“金标准”。在临床研究中,通常以安慰剂组及健康人群为对照,多维度评价受试菌株对不同人群临床参数的影响,并重点关注菌株对宿主的免疫指标、代谢指标和肠道微生物组的调节作用[10-12]

2 益生菌功效性评价方法

2.1 全基因组测序技术

全基因组测序(Whole genome sequencing,WGS)技术是一种高通量的DNA 测序技术,可以对一个生物个体或群体中的所有基因进行测序,可获得菌种/株遗传信息分析、安全性评估等信息[13-18],还可提供益生菌的代谢特性和功能基因及发挥健康功效的分子机制等重要信息,为益生菌的应用和开发奠定了基础。益生菌在肠道中的生存和定植,与特定的代谢途径和功能基因的表达密切相关。如益生菌与肠道上皮细胞和/或黏液的黏附需由多种表面细胞黏附因子介导,例如脂磷壁酸、细胞表面相关蛋白或细胞外黏附素等。WGS与比较基因组分析发现罗伊氏乳杆菌WHH1689含有编码纤连蛋白结合蛋白(一种细胞外膜蛋白)、脂蛋白信号肽酶、麦芽糖磷酸化酶、磷酸三糖异构酶的相关基因,体现其具有环境适应能力和黏附胃肠道的能力,其功效性研究结果也证实了基因预测WHH1689 的益生特性[19]。此外,亦可通过WGS 技术研究益生菌菌株与宿主之间的相互作用,探索益生菌调节肠道菌群,增强免疫力等作用机制[20]

2.2 体外试验与模型

益生菌可平衡肠道菌群、缓解肠道炎症、改善胃肠道功能,促进人体健康,其作用具有菌株特异性。根据FAO/WHO 对益生菌的定义和食品用益生菌的评价指南[21],益生菌的体外功效性评价内容包括益生菌对宿主环境的耐受性,肠道上皮/组织的黏附能力,促进有益菌生长能力,抑制致病菌繁殖,免疫调节能力等,其中以调节肠道菌群和机体免疫作用的体外评价模型居多。

2.2.1 调节肠道菌群的体外评价模型 益生菌只有以足够数量的活菌到达肠道,然后黏附在肠道上皮,才能发挥调节肠道菌群的作用。首先需要评价益生菌在胃肠道的耐受性和黏附能力。传统对益生菌耐酸、耐胆盐和耐渗透压能力等方面的评估是通过调整培养基的pH 值、胆盐和氯化钠浓度,并计算潜在的益生菌在改良培养基中的活菌数。体外评估益生菌黏附性的模型或方法主要有2 种:细胞黏附模型和黏蛋白模型。细胞黏附模型通常采用肠上皮细胞系,如Caco-2、LS174T、HT-29 细胞等人源细胞系。黏附性评价方法是将待测菌与细胞共培养,洗涤去除未黏附的细菌,然后,通过平板活菌计数法、革兰氏染色计数法、放射性同位素标记法或细胞免疫化学染色法等计算黏附率。黏蛋白黏附试验是使用96 孔微量滴度板(MTP)评估细菌对固定化猪胃黏蛋白的黏附情况[22-23]。考虑到肠道中存在大量共生微生物,具有黏液层的肠道组织模型或更能评估益生菌与宿主之间复杂的黏附相互作用[24]

益生菌对肠道菌群的调节能力还体现在抑制致病菌生长繁殖的作用。在体外,通常在固体介质上进行简单的抑制试验来评估益生菌的抑菌活性,即琼脂斑点试验[25]、纸盘扩散试验[26]、孔扩散试验[27]、牛津杯法试验[28]。还有研究报道通过监测指示细菌生长的浊度测定法来评估益生菌培养物滤液对有害菌的抑制作用[29]。最新研究探索了乳酸杆菌与不同病原菌的共聚集能力,使用扫描电镜观察用待测乳酸杆菌无细胞培养上清液处理后病原菌表面的变化[30]

人体胃肠道是十分复杂的环境。为了更好地模拟人体胃肠道环境,研究者开发了人工胃肠液和胰液[31-32]及体外胃肠道模型(Gastrointestinal tract,GIT)[33-34],最具代表性的是人类肠道微生物生态系统模拟器(Simulator of the human intestinal microbial ecosystem,SHIME),即基于在连续发酵罐的模拟器中接种人类粪便样品,从而建立类似人GIT 的复杂微生态系统。此外,还有人工结肠液(Artificial colonic fluid,ARCOL)、微型生物反应器阵列(Mini bioreactor array,MBRA),荷兰应用科学研究组织(The Netherlands Organization,TNO)开发的结肠体外模型(TNO intestinal model,TIM)、哥本哈根的MiniGut 和动态胃肠模拟器等[33,35]。这些模型不仅可用于研究益生菌对肠道微生物群和代谢物的影响,还可用于研究益生元或饮食与宿主肠道的相互作用。连续的体外系统可以有多个隔室,对应于结肠的不同部分,使研究结果在生理上更有意义。

2.2.2 调节免疫力评价模型 调节人体免疫力也被认为是益生菌重要的健康作用之一,主要体现在增强肠道黏膜屏障的完整性,抑制病原菌的生长和入侵,激活和抑制免疫细胞,影响细胞因子的产生和释放等方面。

目前,体外试验中评价益生菌的免疫调节能力常用细胞模型、类器官模型和3D 组织免疫模型等[36]。细胞模型中,常用的肠上皮细胞系、单核细胞、巨噬细胞、外周血单个核细胞(Peripheral blood mononuclear cells,PBMCs)等免疫细胞,以及两类细胞共培养的细胞模型。通过观察细胞增殖、分化、细胞因子产生、分泌性免疫球蛋白水平等指标,来评价益生菌对免疫细胞的影响,这种方法的优势是简单、可靠且可重复[37]。细胞凋亡是维持机体稳态和免疫系统调节的重要途径之一,评估益生菌对细胞凋亡的调节能力,也可以反映益生菌对免疫反应调节作用[38]。随着生物工程技术的发展,与宿主组织或器官相似度更高的类器官模型和3D 组织模型在益生菌的相关研究中显现出巨大的潜力。向一些3D 肠道组织模型或微生理系统中引入免疫细胞,不仅能够评估益生菌的免疫调节能力,还能探究益生菌与肠道复杂和动态免疫相互作用的潜在机制[39-40]

使用上述体外试验和模型可以初步评估益生菌的功效和特性,为益生菌的应用和研究提供了有力的支持。这些方法和模型各有其优点和局限性,可以根据研究目的选择适合的模型进行功效评价。需要注意的是,虽然这些体外模型可以模拟肠道环境和过程,但是其结果仍需要结合体内和人体试验结果进行综合评价。

2.3 动物实验及模型

相比于体外试验,动物实验可通过不同动物模型模式生物揭示益生菌在生物体内的作用效果及机制,已成为益生菌功效性研究中常用的方法。

啮齿类动物模型是最常用的动物模型,常见的造模方法包括给大鼠或小鼠注射化学试剂或抗生素,高脂饮食等方式诱导其发生肠道菌群失调[51]、炎症性肠病[52]、肠易激综合征[53]、肥胖[54]、便秘[55]、腹泻[56]等胃肠道疾病。此外,啮齿动物模型也被用于研究益生菌对肿瘤[57]、代谢性疾病[58-59]、神经性退行疾病[60]的作用机制,或挖掘潜在的益生菌菌株[61]。近年来,无菌啮齿类动物模型成为研究肠道微生物与宿主健康的重要工具,其优点在于提供了一个更真实的环境来研究微生物之间的互作,研究人员能够探究选定的益生菌种类对宿主生理和病理发育的影响[62-63]。然而,无菌动物的成本较高,且对于微生物的感染异常敏感,也更容易出现污染,需要根据实验条件和方案进行选择。除此之外,越来越多的研究尝试利用基因敲除[64]和粪菌移植[65]构建生物模型。基因敲除可以精准模拟人类疾病,从而精确研究基因功能和相关疾病的发生机制,为益生菌研发和临床治疗提供理论支持,然而,其对研究人员的操作技术要求较高,建模周期较长。

一些简单的模式生物,如黑腹果蝇和秀丽隐杆线虫被认为是研究肠道菌群和药物相互作用的良好模式生物,具有生长周期短、表型易于观察、可实现益生菌的高通量筛选等优点,已被广泛用于衰老[66-68]、代谢性疾病[69]、神经退行性疾病[70-72]的研究,还被用于益生菌毒性和安全性评估[73]。斑马鱼具有与哺乳动物非常相似的免疫系统,包括先天性和适应性反应。体积小、易于饲养和管理及相对较低的成本使它们成为理想的动物模型,目前在帕金森[74]、炎症性肠病[75]、酒精性肝病[76]及病原体感染[77-88]方面已成功建立相关研究模型。2017年,研究发现一些社会行为失调的蜜蜂,其大脑基因的表达和人类自闭症患者的大脑基因缺陷表达非常相似[79]。研究发现,蜜蜂的肠道微生物在蜜蜂很多行为上具有非常明显的调节作用[80],可能成为一个非常好的脑-肠轴的模式生物,探究益生菌在大脑功能方面的作用。

大型哺乳动物的生理结构、代谢规律和免疫系统与人类更为相近,在研究益生菌的作用机制时,可获取到更有价值的信息。例如,利用猪模型可以研究益生菌对消化系统[81]、代谢性疾病[82]的影响。猪类的体型较大,可获取大量的样本(如血液、粪便等)供研究、分析用,同时猪的体温和生长速率易于监测,更适合开展生理参数的监测。灵长类动物是一类高级哺乳动物模型,在益生菌研究中主要涉及神经行为学[83]、代谢性疾病[84]、婴儿早期发育[85]等方面。由于灵长类动物模型会受到严格的伦理和法律约束,因此没有被广泛应用。

目前,利用不同的动物模型已发现益生菌可能通过改善肠道屏障,调节肠道微生物群及其生物活性代谢物,调节炎症因子水平,从而对远端器官组织发挥作用,改善疾病症状。随着基因编辑技术和多组学的发展,研究人员可以更深入地探究益生菌与宿主之间的相互作用及发挥功效作用的分子机制。虽然动物模型在益生菌研究中具有诸多优势,但是也存在伦理问题。研究人员在进行动物实验时需严格遵循伦理准则,努力减少动物的痛苦,并尽可能采用替代方法(如体外试验、计算机建模等)来减少动物实验。

2.4 人体试验

益生菌可通过直接调节人体肠道内的“原著”菌群结构,或者通过间接作用影响肠道中短链脂肪酸和胆汁酸的代谢,改善宿主肠道微生态平衡,激活免疫反应,从而对宿主产生有益影响。

人体试验有人群试验和临床试验,其中人群试验通常是对特定人群进行问卷调查等方式,分析益生菌摄入情况和相关健康信息来探讨益生菌与健康之间的关系。例如搜集某个地区居民的饮食习惯和益生菌摄入情况,对数据进行统计分析后得出益生菌摄入与肠道健康之间的关系。Zhao等[86]通过人群试验探究了亚洲6 个地区的志愿者连续摄入干酪乳酪杆菌-Zhang 20 d 对宿主肠道中双歧杆菌菌群的影响。一项针对100 名健康志愿者的人群试验,通过检测志愿者在服用鼠李糖乳酪杆菌Probio-M9 6 周后肠道菌群、代谢物及免疫指标的变化,探究益生菌与宿主免疫和共生微生物之间的联系[87]

中国食品科学技术学会益生菌分会在《益生菌的科学共识(2020 年版)》[88]中提出:益生菌最核心的特征是有益健康的功能属性,是建立在科学严谨的临床试验评价和循证医学证据基础上的。临床试验是对某种亚健康状态、疾病或症状进行益生菌干预或辅助干预的研究。通常采用随机、双盲、安慰剂对照的试验设计,比较分析受试者在益生菌干预后的作用效果、安全性和耐受性等指标,评估益生菌的有效性和安全性。临床试验在研究设计、样本选择、数据采集和分析等方面都有严格要求。临床试验需要在权威的临床试验注册中心进行注册,研究者将临床试验的设计方案及一些必要的研究信息向公众透明,确保患者的权益和安全。临床研究表明复合益生菌[89]可以显著降低腹泻型肠易激综合征严重程度,减轻疼痛严重程度,改善患者生活质量,同时也能降低溃疡性结肠炎患者的粪便钙卫蛋白水平[90]。此外,Sun 等[91]研究发现益生菌通过调节宿主肠道菌群和代谢谱,降低炎症指标,在冠心病、非酒精性脂肪肝等疾病的辅助治疗中也显示出积极效果。

益生菌临床功效性评价应遵循以下基本原则:1)遵循《世界医学大会赫尔辛基宣言》原则及相关伦理要求,首要考虑并保护受试者的权益和安全;2)科学论证益生菌菌株安全性和潜在有效性,严格按照伦理委员会审核批准的试验方案实施;3)研究者应制定风险防控措施并定期评估,科学权衡受试者与社会的预期风险和获益,人群/临床试验只有当预期获益大于风险时才开始或继续;4)遵循《中华人民共和国人类遗传资源管理条例》的规定,设定保护受试者隐私的数据保密方案和安全措施;5)遵守人群/临床试验的利益冲突回避原则。

3 国内外标准法规对益生菌功效性评价的要求

益生菌的功效性评价是各国政府及社会组织等制定相关标准、法规明确要求的重要内容,是对益生菌相关产品健康作用声称的重要依据,同时也是行业健康持续发展的重要保障。虽然目前各国政府及行业组织对益生菌相关要求或指南建议不尽相同,但是对益生菌功效性评价是共识性的要求。

目前,FAO/WHO 提出的“益生菌”定义得到全球广泛认可。FAO/WHO 在《食品用益生菌评价指南》[21]中对益生菌功效性提出了明确的评价要求,即在确定益生菌菌株水平鉴定后,以体外试验筛选潜在益生菌菌株,通过动物模型证实体外试验结果并探索益生菌可能作用机制,而益生菌真实性功效应在临床试验中得到证实,且人体试验应至少重复1 次以证实结果。对于益生菌摄入后,对不同人群可能引起的副作用,则应作常规跟踪检测。欧盟有关益生菌的健康声称应遵循(EC)No 1924/2006《食品营养和健康声称》等相关规定,需要提供有关科学研究证明材料[92]。加拿大相关法规要求对审批益生菌天然健康产品时,提供包含基于菌株水平的安全性和有效性的资料[93]。国际益生菌和益生元科学协会(ISAPP)提出至少获得1 项按照公认科学标准进行的、具有正面功效的人体临床试验的支持[94]。日本要求益生菌功效性以临床研究结果和系统性文献综述等为重要依据[95]

目前我国对于益生菌类保健食品的要求除符合菌种安全性条件外,还应提供具有充足的研究数据和科学共识支持其具有保健功能的材料。在《食品用益生菌通则》[96] 中提出食品用益生菌:应以体外试验、动物实验为参考,以人体试验为重要依据,并提出益生菌菌株健康作用评价方法。

益生菌的健康作用效果与其摄入量、产品类型、食用周期及不同人群等众多因素有关,其功效性评价也应建立在更精准的目标、科学的试验设计和规范的评价程序基础上,为标准法规的制定提供充分的依据,为产业提供清晰的指导,也为消费者提供有力的保障。

4 结语与展望

益生菌功效性评价是决定产品品质和产业高质量发展的重要因素。本文系统分析了益生菌功效性研究现状、体外/体内主要评价方法及临床评价流程和主要原则等。经专家组多次讨论,提出以下科学观点:

1)益生菌的功效性评价是一个多学科交叉的系统工程 益生菌功效的评价是一个系统、严谨、科学的过程,主要包括全基因组测序、体外试验、动物实验和人体试验等多个层面。全基因组测序是解析益生菌的遗传信息和代谢特性的重要技术方法;体外试验是筛选益生菌潜在功效和特性的高效途径;动物实验是评估益生菌安全性、有效性以及推荐剂量等的重要方法;人体试验特别是临床试验,则能更真实反映益生菌对人体的健康作用,4 个评价环节的有效衔接,构成益生菌功效性评价的完整过程。

2)菌株水平的功效性评价是益生菌开发和应用的科学依据 “对宿主健康有益”是益生菌的核心特征之一,对其开展科学的功效评价是益生菌研发和应用的重要环节,可为其开发和应用提供科学依据。由于益生菌的健康作用具有菌株特异性,因此开展基于菌株水平的功效性评价,并明确其量效关系,对于保证益生菌的有效性和可靠性具有重要意义。

3)规范的临床试验是益生菌功效性评价的关键环节 基于循证医学的指南或共识开展的临床试验,是未来指导益生菌应用实践的最佳决策工具,是益生菌功效性评价的“金标准”,可为益生菌的产业化奠定基础。然而,临床试验具有复杂性,需要考虑不同人群差异、复杂的肠道环境、试验时间和范围以及伦理问题等,因此,规范并遵循临床试验随机、对照、重复、盲法的基本原则及相应质量管理要求尤为重要。

4)益生菌的科学原理和作用机制是解析益生菌功效的重要基石 益生菌发挥健康作用具有复杂的作用机制及物质基础。随着测序和人工智能技术的发展,益生菌发挥功效的内在机制及物质基础正在被积极探索。目前研究发现,益生菌可通过调节肠道菌群及其代谢,包括短链脂肪酸、胆汁酸和神经递质等发挥健康作用。未来将益生菌及相关产品在人体内具体的作用靶点及机制、物质基础等纳入评价范畴,可为益生菌的开发和应用奠定更加坚实的科学基础。

5)构建科学规范的功效性评价体系是益生菌标准、法规建设的必要支撑 功效性评价是益生菌监管与标准法规建设的重要支撑,也是益生菌及相关产品获得健康声称的重要依据。目前对于益生菌健康作用的判断:至少获得一项有人体临床试验证实的功效,正在成为全球性的共识。未来,科学的功效性评价方法和规范的临床评价程序将成为标准、法规建设的重要方向。

项目组专家:

陈 卫 中国工程院院士、江南大学

何国庆 浙江大学

张和平 内蒙古农业大学

董 英 江苏大学

邵 薇 中国食品科学技术学会

顾 青 浙江工商大学

艾连中 上海理工大学

石汉平 首都医科大学附属北京世纪坛医院

刘兆平 国家食品安全风险评估中心

姚 粟 中国食品发酵工业研究院

金 苏IFF 健康事业部

云战友 内蒙古伊利实业集团股份有限公司

钟 瑾 中国科学院微生物研究所

徐 进 国家食品安全风险评估中心

李 理 华南理工大学

熊 涛 南昌大学

周世伟 乐斯福管理(上海)有限公司

方曙光 微康益生菌(苏州)股份有限公司

共同执笔人:

张国华 山西大学

孙志宏 内蒙古农业大学

翟齐啸 江南大学

张家超 海南大学

赵 亮 中国农业大学

冯 颖 复旦大学附属华东医院

陈 铮 中国食品科学技术学会

罗江钊 中国食品科学技术学会

参考文献

[1] BRADY L,REID R D.The treatment of Trichomonas vaginalis vaginitis with the Lactobacillus[J].Annals of Surgery,1942,115(5):840-848.

[2] DAY P L,MIMS V,TOTTER J R.The relationship between vitamin M and the Lactobacillus casei factor[J].Journal of Biological Chemistry,1945,161(1):45-52.

[3] LILLY D M,STILLWELL R H.Probiotics:Growthpromoting factors produced by microorganisms [J].Science,1965,147(3659):747-748.

[4] TIAN F W,ZHAI Q X,ZHAO J X,et al.Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice [J].Biological Trace Element Research,2012,150(1-3):264-271.

[5] WANG Y Y,LI J H,MA C C,et al.Lactiplantibacillus plantarum HNU082 inhibited the growth of Fusobacterium nucleatum and alleviated the inflammatory response introduced by F.Nucleatum invasion[J].Food &Function,2021,12(21):10728-10740.

[6] LIN E K,CHANG W W,JHONG J H,et al.Lacticaseibacillus paracasei GM-080 ameliorates allergic airway inflammation in children with allergic rhinitis:From an animal model to a double-blind,randomized,placebo-controlled trial[J].Cells-Basel,2023,12(5):768.

[7] HU C Y,LIU M Y,TANG L Z,et al.Probiotic Lactobacillus rhamnosus modulates the impacts of perfluorobutanesulfonate on oocyte developmental rhythm of zebrafish[J].Science of the Total Environment,2021,776(7):1-9

[8] SINGER J R,BLOSSER E G,ZINDL C L,et al.Preventing dysbiosis of the neonatal mouse intestinal microbiome protects against late-onset sepsis[J].Nature Medicine,2019,25(11):1772-1782.

[9] PAN H D,GUO R J,JU Y M,et al.A single bacterium restores the microbiome dysbiosis to protect bones from destruction in a rat model of rheumatoid arthritis[J].Microbiome,2019,7(1):107.

[10] LANGELLA P,CHATEL J M.Risk assessment of probiotics use requires clinical parameters[J].Nature Reviews Gastroenterology and Hepatology,2019,16(4):202-204.

[11] CHAIYASUT C,SIVAMARUTHI B S,LAILERD N,et al.Probiotics supplementation improves intestinal permeability,obesity index and metabolic biomarkers in elderly Thai subjects:A randomized controlled trial[J].Foods,2022,11(3):268.

[12] MILLER L E,LEHTORANTA L,LEHTINEN M J.Short-term probiotic supplementation enhances cellular immune function in healthy elderly:Systematic review and meta-analysis of controlled studies[J].Nutrition Research Reviews,2019,64(4):1-8.

[13] MANCIA A.New technologies for monitoring marine mammal health [M]// FOSSI M C,PANTI C.Marine Mammal Ecotoxicology.Amsterdam,Academic Press,2018:291-320.

[14] PRADHAN D,MALLAPPA R H,GROVER S.Comprehensive approaches for assessing the safety of probiotic bacteria [J].Food Control,2020,108:106872.

[15] SYROKOU M K,PARAMITHIOTIS S,DROSINOS E H,et al.A comparative genomic and safety assessment of six Lactiplantibacillus plantarum subsp.argentoratensis strains isolated from spontaneously fermented greek wheat sourdoughs for potential biotechnological application[J].International Journal of Molecular Sciences,2022,23(5):2487.

[16] ANSARI J M,COLASACCO C,EMMANOUIL E,et al.Strain-level diversity of commercial probiotic isolates of Bacillus,Lactobacillus,and Saccharomyces species illustrated by molecular identification and phenotypic profiling[J].PLoS One,2019,14(3):e0213841.

[17] ZHANG W,WANG J,ZHANG D Y,et al.Complete genome sequencing and comparative genome characterization of Lactobacillus johnsonii ZLJ010,a potential probiotic with health-promoting properties[J].Frontiers In Genetics,2019,10:812.

[18] WU L,XIE X Q,LI Y,et al.Gut microbiota as an antioxidant system in centenarians associated with high antioxidant activities of gut-resident Lactobacillus[J].NPJ Biofilms and Microbiomes,2022,8(1):102.

[19] CHEN L,GU Q,LI P,et al.Genomic analysis of Lactobacillus reuteri WHH1689 reveals its probiotic properties and stress resistance[J].Food Science &Nutrition,2019,7(2):844-857.

[20] ZAGO M,SCALTRITI E,BONVINI B,et al.Genomic diversity and immunomodulatory activity of Lactobacillus plantarum isolated from dairy products[J].Beneficial Microbes,2017,8(4):597-604.

[21] Food and Agriculture Organization of the United Nations/World Health Organization.Guidelines for the evaluation of probiotics in food[R].(2002-05-01)[2023-05-22].https://www.foodinprogress.com/wpcontent/uploads/2019/04/Guidelines-for-the-Evaluation-of-Probiotics-in-Food.pdf.

[22] BORICHA A A,SHEKH S L,PITHVA S P,et al.In vitro evaluation of probiotic properties of Lactobacillus species of food and human origin[J].LWT -Food Science and Technology,2019,106(6):201-208.

[23] GAO Y R,LI D P,LIU S,et al.Probiotic potential of L.sake C2 isolated from traditional Chinese fermented cabbage[J].European Food Research and Technology,2012,234:45-51.

[24] VAN TASSELL M L,MILLER M J.Lactobacillus adhesion to mucus[J].Nutrients,2011,3(5):613-636.

[25] JACOBSEN C N,ROSENFELDT NIELSEN V,HAYFORD A,et al.Screening of probiotic activities of forty-seven strains of Lactobacillus spp.by in vitro techniques and evaluation of the colonization ability of five selected strains in humans[J].Applied and Environmental Microbiology,1999,65(11):4949-4956.

[26] GUO X H,KIM J M,NAM H M,et al.Screening lactic acid bacteria from swine origins for multistrain probiotics based on in vitro functional properties[J].Anaerobe,2010,16(4):321-326.

[27] TAGG J,MCGIVEN A.Assay system for bacteriocins[J].Applied Microbiology,1971,21(5):943.

[28] QAYYUM N,SHUXUAN W,YANTIN Q,et al.Characterization of short-chain fatty acid-producing and cholesterol assimilation potential probiotic lactic acid bacteria from Chinese fermented rice[J].Food Bioscience,2023,52:102404.

[29] LÄHTEINEN T,MALINEN E,KOORT J M K,et al.Probiotic properties of Lactobacillus isolates originating from porcine intestine and feces[J].Anaerobe,2010,16(3):293-300.

[30] PRABHURAJESHWAR C,CHANDRAKANTH K.Evaluation of antimicrobial properties and their substances against pathogenic bacteria in-vitro by probiotic Lactobacilli strains isolated from commercial yoghurt[J].Clinical Nutrition Experimental,2019,23(2):97-115.

[31] CHARTERIS W P,KELLY P M,MORELLI L,et al.Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract[J].Journal of Applied Microbiology,1998,84(5):759-768.

[32] 冯媛媛,乔琳,姚宏明,等.益生菌安全性和有效性评价方法的研究进展[J].中国畜牧兽医,2017,44(7):2022-2032.FENG Y Y,QIAO L,YAO H M,et al.Research progress on the evaluation methods of safety and efficacy of probiotics[J].China Animal Husbandry &Veterinary Medicine,2017,44(7):2022-2032.

[33] PHAM V.The application of in vitro human intestinal models on the screening and development of pre-and probiotics[J].Beneficial Microbe,2018,9(5):725-742.

[34] VON MARTELS J Z H,SADAGHIAN SADABAD M,BOURGONJE A R,et al.The role of gut microbiota in health and disease:In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut[J].Anaerobe,2017,44(4):3-12.

[35] SINGH V,SON H,LEE G,et al.Role,relevance,and possibilities of in vitro fermentation models in human dietary,and gut-microbial studies[J].Biotechnology and Bioengineering,2022,119(11):3044-3061.

[36] ROH T T,CHEN Y,RUDOLPH S,et al.In vitro models of intestine innate immunity[J].Trends in Biotechnology,2021,39(3):274-285.

[37] EZENDAM J,VAN LOVEREN H.Probiotics:Immunomodulation and evaluation of safety and efficacy[J].Nutrition Reviews,2006,64(1):1-14.

[38] SRIKHAM K,THIRABUNYANON M.Bioprophylactic potential of novel human colostrum probiotics via apoptotic induction of colon cancer cells and cell immune activation[J].Biomedicine &Pharmacotherapy,2022,149(5):112871.

[39] DE GREGORIO V,SGAMBATO C,URCIUOLO F,et al.Immunoresponsive microbiota-gut-on-chip reproduces barrier dysfunction,stromal reshaping and probiotics translocation under inflammation[J].Biomaterials,2022,286:121573.

[40] KIM H J,LI H,COLLINS J J,et al.Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip[J].Proceedings of the National Academy of Sciences,2016,113(1):E7-E15.

[41] ASSANDRI M H,MALAMUD M,TREJO F M,et al.S-layer proteins as immune players:Tales from pathogenic and non-pathogenic bacteria[J].Current Research in Microbial Sciences,2023,4:100187.

[42] WANG H,ZHANG L,XU S,et al.Surface-layer protein from Lactobacillus acidophilus NCFM inhibits lipopolysaccharide -induced inflammation through MAPK and NF-κB signaling pathways in RAW264.7 cells[J].Journal of Agricultural and Food Chemistry,2018,66(29):7655-7662.

[43] AI L Z,GUO Q B,DING H H,et al.Structure characterization of exopolysaccharides from Lactobacillus casei LC2W from skim milk[J].Food Hydrocolloids,2016,56:134-143.

[44] XIAO L Y,YANG Y,HAN S,et al.Effects of genes required for exopolysaccharides biosynthesis in Lacticaseibacillus paracasei S-NB on cell surface characteristics and probiotic properties[J].International Journal of Biological Macromolecules,2023,224(1):292-305.

[45] MONTGOMERY T L,ECKSTROM K,LILE K H,et al.Lactobacillus reuteri tryptophan metabolism promotes host susceptibility to CNS autoimmunity[J].Microbiome,2022,10(1):1-27.

[46] CHONDROU P,KARAPETSAS A,KIOUSI D E,et al.Assessment of the immunomodulatory properties of the probiotic strain Lactobacillus paracasei K5 in vitro and in vivo[J].Microorganisms,2020,8(5):1-14.

[47] PAHUMUNTO N,BASIC A,ÖSTBERG A K,et al.Oral Lactobacillus strains reduce cytotoxicity and cytokine release from peripheral blood mononuclear cells exposed to Aggregatibacter actinomycetemcomitans subtypes in vitro[J].BMC Microbiology,2020,20(1):279.

[48] JANG A,ROD-IN W,MONMAI C,et al.Antiinflammatory potential of Lactobacillus reuteri LM1071 via eicosanoid regulation in LPS-stimulated RAW264.7 cells[J].Journal of Applied Microbiology,2022,133(1):67-75.

[49] BERMUDEZ -BRITO M,MUÑOZ -QUEZADA S,GÓMEZ-LLORENTE C,et al.Lactobacillus paracasei CNCM I-4034 and its culture supernatant modulate salmonella-induced inflammation in a novel transwell co-culture of human intestinal-like dendritic and Caco -2 cells [J].BMC Microbiology,2015,15(1):79.

[50] SUGIMURA N,LI Q,CHU E S H,et al.Lactobacillus gallinarum modulates the gut microbiota and produces anti-cancer metabolites to protect against colorectal tumourigenesis[J].Gut,2022,71(10):2011.

[51] LI N,WANG J,LIU P,et al.Multi-omics reveals that Bifidobacterium breve M-16V may alleviate the immune dysregulation caused by nanopolystyrene[J].Environment International,2022,163:107191.

[52] ZHANG Y,HOU Q C,MA C,et al.Lactobacillus casei protects dextran sodium sulfate-or rapamycininduced colonic inflammation in the mouse[J].European Journal of Nutrition,2020,59(4):1443-1451.

[53] ZHAO Q,YANG W R,WANG X H,et al.Clostridium butyricum alleviates intestinal low-grade inflammation in TNBS-induced irritable bowel syndrome in mice by regulating functional status of lamina propria dendritic cells[J].World Journal of Gastroenterology,2019,25(36):5469-5482.

[54] KONG C,GAO R Y,YAN X B,et al.Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet[J].Nutrition,2019,60:175-184.

[55] WANG L L,HU L J,XU Q,et al.Bifidobacterium adolescentis exerts strain-specific effects on constipation induced by loperamide in BALB/c mice[J].International Journal of Molecular Sciences,2017,18(2):318.

[56] PAN J Z,GONG G D,WANG Q,et al.A singlecell nanocoating of probiotics for enhanced amelioration of antibiotic-associated diarrhea[J].Nature Communications,2022,13(1):2117.

[57] GAO G Q,MA T,ZHANG T,et al.Adjunctive probiotic Lactobacillus rhamnosus Probio-M9 administration enhances the effect of anti-PD-1 antitumor therapy via restoring antibiotic-disrupted gut microbiota[J].Frontiers in Immunology,2021,12:772532.

[58] HE Q W,YANG C C,KANG X H,et al.Intake of Bifidobacterium lactis Probio-M8 fermented milk protects against alcoholic liver disease[J].Journal of Dairy Science,2022,105(4):2908-2921.

[59] WANG Y M,DILIDAXI D,WU Y C,et al.Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice[J].Biomedicine &Pharmacotherapy,2020,125:109914.

[60] SUN J,LI H J,JIN Y J,et al.Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson's disease via gut microbiota-GLP-1 pathway[J].Brain Behavior and Immunity,2021,91:703-715.

[61] LE BARZ M,DANIEL N,VARIN T V,et al.In vivo screening of multiple bacterial strains identifies Lactobacillus rhamnosus Lb102 and Bifidobacterium animalis ssp.lactis Bf141 as probiotics that improve metabolic disorders in a mouse model of obesity[J].The FASEB Journal,2019,33(4):4921-4935.

[62] XIA J F,JIANG S M,LV L X,et al.Modulation of the immune response and metabolism in germfree rats colonized by the probiotic Lactobacillus salivarius LI01[J].Applied Microbiology and Biotechnology,2021,105(4):1629-1645.

[63] HUANG P,YI S,YU L,et al.Integrative analysis of the metabolome and transcriptome reveals the influence of Lactobacillus plantarum CCFM8610 on germ-free mice[J].Food and Function,2023,14(1):388-398.

[64] TAN J X,DONG L Q,JIANG Z,et al.Probiotics ameliorate IgA nephropathy by improving gut dysbiosis and blunting NLRP3 signaling[J].Journal of Translational Medicine,2022,20(1):1-16.

[65] MA C,SUN Z,ZENG B H,et al.Cow-to-mouse fecal transplantations suggest intestinal microbiome as one cause of mastitis[J].Microbiome,2018,6(1):200.

[66] LI W Y,GAO L,HUANG W K,et al.Antioxidant properties of lactic acid bacteria isolated from traditional fermented yak milk and their probiotic effects on the oxidative senescence of Caenorhabditis elegans[J].Food &Function,2022,13(6):3690-3703.

[67] KUMAR S S,PRISCILLA S,SRIVASTAVA P,et al.Influence of probiotics,synbiotics,and heatkilled Lactobacillus fermentum on ageing using Drosophila model-A preliminary study[J].Journal of Applied Pharmaceutical Science,2023,13(4):136-140.

[68] MA S,SUN H,YANG W C,et al.Impact of probiotic combination in InR [E19]/TM2 Drosophila melanogaster on longevity,related gene expression,and intestinal microbiota:A preliminary study[J].Microorganisms,2020,8(7):1027.

[69] BHANJA A,NAYAK N,MUKHERJEE S,et al.Treating the onset of diabetes using probiotics along with prebiotic from Pachyrhizus erosus in high-fat diet fed Drosophila melanogaster[J].Probiotics and Antimicrobial Proteins,2022,14(5):884-903.

[70] TAN F,LIU G,LAU S Y,et al.Lactobacillus probiotics improved the gut microbiota profile of a Drosophila melanogaster Alzheimer's disease model and alleviated neurodegeneration in the eye[J].Beneficial Microbes,2020,11(1):79-89.

[71] GOYA M E,XUE F,SAMPEDRO -TORRES -QUEVEDO C,et al.Probiotic Bacillus subtilis protects against α-synuclein aggregation in C.elegans[J].Cell Reports,2020,30(2):367-380.e7.

[72] COGLIATI S,CLEMENTI V,FRANCISCO M,et al.Bacillus subtilis delays neurodegeneration and behavioral impairment in the Alzheimer's disease model Caenorhabditis elegans[J].Journal of Alzheimer's Disease,2020,73(3):1035-1052.

[73] CASTRO -LÓPEZ C,PASCACIO -VILLAFÁN C,ALUJA M,et al.Safety assessment of the potential probiotic bacterium Limosilactobacillus fermentum J23 using the mexican fruit fly(Anastrepha ludens Loew,Diptera:Tephritidae)as a novel in vivo model [J].Probiotics and Antimicrobial Proteins,2022,27:1-16.

[74] ILIE O D,PADURARU E,ROBEA M A,et al.The possible role of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 on locomotor activity and oxidative stress in a rotenone-induced zebrafish model of Parkinson's disease[J].Oxidative Medicine and Cellular Longevity,2021,2021:9629102.

[75] NI Y H,ZHANG Y,ZHENG L J,et al.Bifidobacterium and Lactobacillus improve inflammatory bowel disease in zebrafish of different ages by regulating the intestinal mucosal barrier and microbiota[J].Life Sciences,2023,324:121699.

[76] BRUCH -BERTANI J P,URIBE -CRUZ C,PASQUALOTTO A,et al.Hepatoprotective effect of probiotic Lactobacillus rhamnosus GG through the modulation of gut permeability and inflammasomes in a model of alcoholic liver disease in zebrafish[J].Journal of the American College of Nutrition,2020,39(2):163-170.

[77] NAG D,FARR D,RAYCHAUDHURI S,et al.An adult zebrafish model for adherent -invasive Escherichia coli indicates protection from AIEC infection by probiotic E.coli Nissle[J].Iscience,2022,25(7):104572.

[78] SHAN C J,LI M,LIU Z,et al.Pediococcus pentosaceus enhances host resistance against pathogen by increasing IL -1beta production:Understanding probiotic effectiveness and administration duration[J].Frontiers in Immunology,2021,12:766401.

[79] CRESPI B J.Shared sociogenetic basis of honey bee behavior and human risk for autism[J].Proceedings of the National Academy of Sciences of the United States of America,2017,114(36):9502-9504.

[80] ZHANG Z J,MU X H,CAO Q N,et al.Honeybee gut Lactobacillus modulates host learning and memory behaviors via regulating tryptophan metabolism[J].Nature Communications,2022,13(1):2037.

[81] VALENT D,ARROYO L,FABREGA E,et al.Effects of a high-fat-diet supplemented with probiotics and ω3-fatty acids on appetite regulatory neuropeptides and neurotransmitters in a pig model[J].Beneficial Microbes,2020,11(4):347-359.

[82] LEE Y J,LI K Y,WANG P J,et al.Alleviating chronic kidney disease progression through modulating the critical genus of gut microbiota in a cisplatin-induced Lanyu pig model[J].Journal of Food and Drug Analysis,2020,28(1):103-114.

[83] MCGINN P.Does Lactobacillus reuteri probiotic treatment improve sleep quality in rhesus Macaques(Macaca mulatta)displaying the self-injurious phenotype? [D].Amherst:University of Massachusetts Amherst,2019.

[84] ZHAO Y,SHU Y,ZHAO N,et al.Insulin resistance induced by long-term sleep deprivation in rhesus macaques can be attenuated by Bifidobacterium[J].American Journal of Physiology-Endocrinology and Metabolism,2022,322(2):E165-E172.

[85] HE X,SLUPSKY C M,DEKKER J W,et al.Integrated role of Bifidobacterium animalis subsp.lactis supplementation in gut microbiota,immunity,and metabolism of infant rhesus monkeys[J].Msystems,2016,1(6):e00128-16.

[86] ZHAO F Y,BAI X Y,ZHANG J T,et al.Gut Bifidobacterium responses to probiotic Lactobacillus casei Zhang administration vary between subjects from different geographic regions[J].Applied Microbiology and Biotechnology,2022,106(7):2665-2675.

[87] ZHANG M,ZHENG Y,SUN Z,et al.Change in the gut microbiome and immunity by Lacticaseibacillus rhamnosus Probio-M9[J].Microbiology Spectrum,2023,11(2):e03609-03622.

[88] 中国食品科学技术学会益生菌分会.益生菌的科学共识(2020 年版)[J].中国食品学报,2020,20(5):303-307.Probiotics Society of the Chinese Institute of Food Science and Technology.Scientific consensus on probiotics(2020)[J].Journal of Chinese Institute of Food Science and Technology,2020,20(5):303-307.

[89] B,PROZOROW-KRÓL B,CICHOZ˙-LACH H,et al.The effectiveness and safety of multi-strain probiotic preparation in patients with diarrhea-predominant irritable bowel syndrome:A randomized controlled study[J].Nutrients,2021,13(3):756.

[90] BJARNASON I,SISSION I,HAYEE B H.A randomised,double-blind,placebo-controlled trial of a multi-strain probiotic in patients with asymptomatic ulcerative colitis and Crohn's disease[J].Inflammopharmacology,2019,27(3):465-473.

[91] SUN B Q,MA T,LI Y L,et al.Bifidobacterium lactis Probio-M8 adjuvant treatment confers added benefits to patients with coronary artery disease via target modulation of the gut-heart/-brain axes[J].Msystems,2022,7(2):e0010022.

[92] The European Parliament and the Council of the European Union.Regulation(EC)No 1924/2006 of the European Parliament and the Council of the European Union of 20 December 2006 on nutrition and health claims made on foods[EB/OL].(2006-12-30)[2023-05-22].http://data.europa.eu/eli/reg/2006/1924/oj.

[93] Health Canada.Guidance document-the use of probi otic microorganisms in food[EB/OL].(2009-04-16)[2023-05-22].https://www.canada.ca/en/healthcanada/services/food-nutrition/legislation-guidelines/guidance-documents/guidance-document-use-probiotic-microorganisms-food-2009.html.

[94] BINDA S,HILL C,JOHANSEN E,et al.Criteria to qualify microorganisms as 'Probiotic' in foods and dietary supplements [J].Frontiers in Microbiology,2020,11:1662.

[95] Ministry of Health,Labour and Welfare.Food with health claims,food for special dietary uses,and nutrition labeling[EB/OL].(2018-06-09)[2023-05-22].https://www.mhlw.go.jp/english/topics/foodsafety/fhc/.

[96] 中国食品科学技术学会.食品用益生菌通则:T/CIFST 009-2022[S].北京:中国食品科学技术学会,2022.Chinese Institute of Food Science and Technology.General standard of probiotics for food use:T/CIFST 009-2022[S].Beijing:Chinese Institute of Food Science and Technology,2022.

A Scientific Review of Research and Evaluation of Probiotics Efficacy

(Probiotics Society of the Chinese Institute of Food Science and Technology,Beijing 100048

Abstract Probiotics are a group of living microorganisms beneficial to host health when administered in adequate amounts.In recent years,the probiotic industry has thrived domestically and internationally.It has become a global research hotspot and a primary direction of industrial innovation and development by profoundly exploring and analyzing the probiotics' efficacy and health action mechanism and achieving more accurate,effective and safe probiotics for human health.The beneficial effect of probiotics is strain specific,and yet its efficacy needs to be evaluated scientifically and a unified standard for the evaluation of probiotics efficiency is required.At present,based on the systematic analysis of the research status of probiotics' regulation of intestinal flora and immunity,the Probiotics Society of the Chinese Institute of Food Science and Technology sorted out in vitro evaluation methods of whole gene sequencing technology through animal experiments,population experiments and clinical trials.Furthermore,with expert opinions,provided a set of domestic and international regulations and relevant standards.This research aimed to provide a reference for scientific research,standard and regulation formulation,industrial application,and scientific popularization of probiotics.

Keywords probiotics;in vitro test;animal experiments;clinical trials;intestinal microbe

文章编号 1009-7848(2023)05-0444-12

DOI:10.16429/j.1009-7848.2023.05.044

收稿日期:2023-05-22

通信作者:中国食品科学技术学会益生菌分会E-mail:cifst_lab@163.com