乳酸菌对果蔬产品的抑菌机理及应用

王 璐1,蒋沙沙1,李德海1*,孙常雁2,李书欣1

1 东北林业大学生命科学学院 哈尔滨150040 2 哈尔滨理工大学材料科学与化学工程学院 哈尔滨 150080)

摘要 随着人们对健康饮食的日益重视,果蔬产品作为重要的营养来源备受关注。然而,果蔬的保藏一直是个难题,传统的果蔬保鲜剂往往依赖于化学物质,其在提高保鲜效果的同时却也带来了潜在的风险和不良影响,因此在果蔬生产和分销链中开发绿色有效的抗菌剂成为研究热点。近年来,利用乳酸菌来延缓果蔬腐败进程已引起研究人员的极大兴趣。乳酸菌可以减缓果蔬腐败,且没有重大不良反应,其作为果蔬防腐剂的应用潜力巨大。然而,乳酸菌的抑菌机理不明确,而且获得监管机构批准并可广泛用于商业用途的乳酸菌或其代谢产物数量仍然很少,导致其在果蔬保鲜贮藏中的应用还不够广泛。本文综述乳酸菌的抑菌机理、应用现状以及在抑制腐败菌方面的优势和局限性,总结近年有关乳酸菌作为果蔬产品抑菌剂的研究进展,并对乳酸菌的发展进行展望,为乳酸菌在果蔬保鲜中的应用提供理论依据。

关键词 果蔬;乳酸菌;乳酸菌代谢产物;抑菌

由于水果和蔬菜具有高营养价值和促进健康的特性,如防止糖尿病、癌症和心脏病等,因此对它们的需求越来越大[1]。据国家统计局数据(2021年中国统计年鉴),我国农产品总产量近20 亿t,而一年的果蔬损耗量就超过1 亿t,比多数国家年产果蔬总产量还多[2]。每年超过价值3 000 亿的生鲜食品被损耗,相当于约6.7×108 hm2 耕地的投入和产出被浪费掉,而我国拥有的总耕地面积仅为1.2×109 hm2。我国的农产品腐败损失率高达20%~30%,而欧美国家还不到5%(http://www.nyguancha.com/)。2019 年的数据显示,全球每年有超过三分之一的果蔬因腐败菌污染、环境因素和储存条件而变质,其损失大约占粮食总损失的40%~50%,导致每年7 500 亿美元的总损失[3]。果蔬产品的质量劣化主要与腐败菌的生长繁殖和果蔬自身生理过程的相互作用有关[4],而这些损失可在采后贮藏中得到预防。为了防止果蔬被腐败菌污染,人们广泛使用常规化学防腐剂。尽管这些化学防腐剂在一定程度上能够延长果蔬的保质期,但是使用不当可能会对环境和人类的健康产生不可逆转的影响[5]。在这种背景下,消费者对食品安全的认知日益增强,他们开始要求使用更安全、更天然的防腐剂。生物防腐剂作为一种替代选择逐渐崭露头角,并以其天然成分和抗菌性能,受到了广泛的研究和应用关注,如乳酸菌产生的乳酸链球菌肽、植物精油、壳聚糖等,其中使用乳酸菌进行果蔬保鲜除具有绿色、环保、安全、无毒等优势外,还可对人体产生一定的益处[6],如乳酸菌发酵导致B 族维生素增加[7],提高抗氧化活性等。

近年来,乳酸菌(Lactic acid bacteria,LAB)被认为是可以增强果蔬产品保鲜的生物替代品,可以减少果蔬产品中的细菌载量,如抑制李斯特菌及梭状芽胞杆菌等腐败微生物[8]。乳酸菌被用于果蔬保鲜,是因其能够能产生一系列的抗菌活性物质,如有机酸、过氧化氢、细菌素等,它们可以抑制病原菌的生长[9]和降低抗菌素耐药性[10],这些活性物质对革兰氏阳性菌和阴性菌均有效。此外,作为益生菌,乳酸菌还具备潜在的健康效益。然而,乳酸菌在果蔬产品保鲜中应用并不广泛。本文综述了乳酸菌对果蔬腐败菌的抑菌机制、研究现状及果蔬产品保鲜中的应用情况。

1 乳酸菌对果蔬腐败菌的抑菌机理

乳酸菌是一种公认的食品级微生物,能够产生抗菌活性物质并且对产品风味具有一定的积极影响[10]。乳酸菌在果蔬中的抑菌作用可以通过2种方式实现:一是添加活性菌,与果蔬中被污染或原生腐败菌共同培养,乳酸菌可以快速定殖在果蔬产品上并迅速生长,与新鲜果蔬上的腐败菌群竞争环境和营养物质。利用各种微生物之间的拮抗作用和竞争性抑制作用,阻碍有害微生物的生长而不影响有益菌的增加[11],以延缓腐败菌或病原菌的生长,提高食品安全性和保质期。二是提取乳酸菌在正常生长和新陈代谢过程中产生的抑菌活性物质,并在果蔬表面按一定量处理,以达到果蔬保鲜的目的[12]。乳酸菌在果蔬腐败菌上的作用机制如图1 所示,它们的作用形式如图2 所示。

图1 乳酸菌在果蔬腐败菌上的作用机制
Fig. 1 The mechanism of lactic acid bacteria on spoilage bacteria of fruits and vegetables

图2 乳酸菌在果蔬腐败菌上的作用形式
Fig. 2 The action form of lactic acid bacteria on spoilage bacteria in fruits and vegetables

1.1 乳酸菌与果蔬腐败菌的拮抗作用

在微生物的生命历程中,它们为了生存而争夺有利的环境条件,对营养物质和环境资源的竞争主要以间接竞争和直接竞争两种方式进行。间接竞争即为微生物寻求快速利用有机资源,而不与种群的其它成员进行直接竞争。直接竞争涉及竞争对手之间直接的对抗性互动,即为微生物之间的拮抗作用。其中腐败菌和乳酸菌争夺可用的营养素时,无论是作为单独的机制还是与生物活性化合物结合使用,乳酸菌均可能通过有效利用营养物质来抑制腐败生物的生长,这会限制或耗尽生长培养基中必需的营养素[12],以此达到抑制腐败菌的目的。Honoré 等[13]对3 种副乳杆菌的代谢物消耗量进行评估,并研究了它们与腐烂菌生长抑制的联系。他们观察到,3 种副乳杆菌所消耗的葡萄糖和谷氨酰胺数量与腐烂菌的增长呈负相关关系,由此体现了乳酸菌与腐败菌的拮抗作用。

1.2 乳酸菌的代谢产物对腐败菌具有抑制作用

已鉴定出多种由乳酸菌产生的抗菌化合物,例如细菌素、有机酸、二乙酰基、乳酸等。这些物质的种类涵盖了基础的有机酸及其初级代谢产物,再到更为复杂的多肽、蛋白质及蛋白质裂解产物,分别对腐败生物的抑菌潜力进行表征,发现它们能够通过降低pH 值、产生酸并调整细胞膜的通透性等发挥抗菌作用。虽然它们的抗菌作用略有差别,但均可以延长保质期、增强安全性。已知从乳酸菌产生的代谢物可以有效地对抗革兰氏阳性和阴性细菌,并且可以降低抗菌素耐药性,由此体现了它们对果蔬保鲜的重要性。此外,乳酸菌包括几个产生代谢物的属,已被相关食品监管机构批准用于食品应用。

1.2.1 有机酸 有机酸是乳酸菌发酵的主要代谢物,包括柠檬酸、乙酸和乳酸等[14]。王雅等[15]经试验发现乳酸菌菌株A32 在椰子水中所产抑菌物质主要是有机酸类,此外还有很多研究表明乳酸菌产生的有机酸可显著抑制果蔬及其制品上的腐败菌,因此乳酸菌代谢产生的有机酸可以在果蔬中被用作抗菌剂。作用机理主要有降低pH 值、改变细胞膜的结构和通透性以及两种或多种有机酸的协同作用等[16]。研究表明,添加有机酸会引起环境pH 值的改变,从而影响腐败菌细胞膜的结构和通透性,导致内部细胞代谢物的泄漏[17-18]。此外,有机酸还表现出亲脂性特征,被允许在细胞膜脂质中增溶,并可以进入细胞质。在这种环境中,有机酸发生解离,从而会抑制酶促反应的发生以及导致细胞内环境的酸化,减少腐败菌增殖[16]。这种情况的发生取决于几个因素,如目标腐败菌的种类、酸解离常数、分子极性和大小、pH 值以及乳酸菌产生的其它抗菌物质[19]。有机酸还可以通过改变细胞膜通透性来协同增强其它抗菌物质的作用,如由乳酸菌生产的乳酸除了降低pH 值而具有抗菌特性外,还具有革兰氏阴性细菌外膜渗透剂的功能,并且可以作为其它抗菌物质作用的增强剂[20]。当乳酸和乙酸混合时可以发挥协同作用,比单独使用任何一种酸更有效[21]。有机酸可以抑制梭状芽胞杆菌(Clostridium difficile)、假单胞菌(Pseudomonas sp.)等果蔬腐败菌,沙门氏菌(Salmonella)、李斯特菌(Listeria monocytogenes)等致病菌,以及蜡样芽孢杆菌(Bacillus cereus)、肉毒梭状芽胞杆菌(Clostridiumbotulinum)、金黄色葡萄球菌(Staphylococcus aureus)等具有致毒素的细菌[22]。当然,乳酸菌的其它代谢产物也有助于乳酸菌的整体抗菌能力。

1.2.2 细菌素 还有一类由乳酸菌分泌的具有广谱抑菌活性的蛋白质类抑菌物质——细菌素[23],也已被证明对果蔬及其制品上的腐败菌有效,如Yi 等[24]发现细菌素GF-15 对在线鲜切水果中富含的粪肠球菌表现出良好的抗菌活性。由乳酸菌分泌的细菌素主要有乳酸菌素、乳酸杆菌素、乳酸链球菌素等[25],每一种都有针对生物膜的特定作用机制,它们主要通过作用于细胞膜和细胞壁发挥抗菌作用[17]。细菌素分子首先被膜表面吸收,形成瞬时孔道,造成质子动能损耗、跨膜pH 值梯度变化,造成膜透性下降,并致使小分子渗漏、养分转运及ATP 合成受阻[26],最终造成菌体失活而死亡。另外,有些细菌素能引起敏感细胞的溶解,显示出对果蔬致病菌和某些真菌的抗菌活性[27]。细菌素是天然存在的抗菌素,且已被证明可以作为食品生物防腐剂并进一步应用。它可以杀死或抑制与产生它们的细菌相关或不相关的细菌菌株。具有多种作用模式的细菌素组合可以提高对果蔬的保护效果,并且可以降低抗菌素耐药性的发生率。

1.2.3 罗伊氏素 罗伊氏素(Reuterin)属于抗生素的一种,是在厌氧条件下由罗伊氏乳杆菌在甘油发酵过程中产生的,该物质主要构成成分包括3-羟基丙醛(3-HPA)单体、二聚体和水合物[28]。虽然经过20 年的调查,罗伊氏素发挥其抗菌作用的确切作用机制仍然难以捉摸,但是已经基本表明,它可以通过对蛋白及小分子巯基进行修饰,引起细胞内的中的氧化应激反应,进而抑制DNA 的合成,达到抑制细菌生长的目的[29]。罗伊氏素对各种革兰氏阳性和革兰氏阴性细菌、酵母菌和原生微生物具有杀菌和抑菌作用,并且对蛋白酶和脂肪酶具有抗性[29]

1.2.4 H2O2 过氧化氢(H2O2)可以由乳酸菌通过氧化酶【如丙酮酸氧化酶(Pox)、乳酸氧化酶(Lox)和NADH 氧化酶(Nox)】在中枢碳代谢中产生,对细菌和真菌都有抗菌作用。它可以对细胞膜产生强烈的氧化作用,并可以影响蛋白质的分子结构[30]。Teusink 等[31]从多种食品中筛选到193 株乳酸菌,发现能够在悬浮液中累积较高H2O2 的有27株,且乳酸乳球菌AI 62(Lactococcus lactis AI 62)产生的H2O2 对腐败菌均有显著抑菌作用。H2O2 的作用模式与细菌细胞上的强氧化作用以及细胞蛋白质的基本分子结构的破坏有关,可导致膜通透性的增加。此外,与其它物质(例如硫氰酸酯)的反应可导致新抑制剂的形成[32]。研究发现,乳酸菌悬浮液中产生的H2O2 能够富集在菌悬液中,且抑菌效明显,目前H2O2 已成为一种被广泛应用于果蔬等食品领域的抗菌物质[33-34]。H2O2 抑制细菌的作用机理是通过对DNA、蛋白质和膜脂的氧化来实现的[31,35-36]

1.2.5 乙醇和CO2 乙醇是由碳水化合物和乳酸的无氧转化产生的一种有价值的最终产物。乙醇在果蔬食品中可以具有抗菌作用,是因为它对膜流动性和完整性具有影响,这可能导致质膜渗漏和细菌细胞死亡[28]。CO2 是在异质发酵代谢过程中形成的另一种低分子质量化合物,它的抑制作用基于厌氧环境的产生和影响细胞膜特性[12]。CO2 分子可以与细胞膜脂质相互作用,这就阻碍了离子被吸收到细胞中的可能性。不同的微生物对CO2的敏感性不同,酵母和霉菌对CO2 具有很强的抵抗力,需要相当高的浓度来抑制它们,而革兰氏阴性嗜冷菌对CO2 气体非常敏感。

1.2.6 抗真菌活性肽 除了小代谢物外,具有抗真菌活性的肽也是由乳酸菌产生的[37],主要包括聚氨基酸、合成小分子AMP(单磷酸腺苷)和脂肽[38]等基本类。其中,聚赖氨酸可以通过静电相互作用使果蔬腐败菌细胞膜去极化,导致细胞膜破裂或内容物流出,最终引起腐败菌死亡[39-40]。这种作用机制使果蔬腐败菌难以产生抗药性,从而显著提高抗菌效率;而AMP 表现出共同的特征:正电荷和疏水性。正电荷促进对带负电荷的果蔬腐败菌细胞质膜的选择,而疏水性和整体两亲性将肽锚定在细胞膜上,并且AMP 可以自结合到膜中,膜破坏致使细胞内容物流出,并最终导致细菌死亡[41-42];脂肽由于其特殊的结构,具有提高两亲性和与细胞膜脂质壁相容的优点。它们可以通过内吞作用将活性物质输送到细胞中,还可以破坏腐败菌的细胞壁并起到灭菌作用[43]。抗菌肽的抗菌机制涉及细菌细胞膜结构的不可逆损伤及其细胞壁和膜的通透性增加,而与细胞中酶系统的相互作用已被提出作为抑制细菌生长的潜在靶标。这些抗菌活性肽的抗菌活性的差异可能与它们的结构、氨基酸序列和每个肽的抗菌机制有关。

1.2.7 其它 除了前面讨论的几种代谢产物外,LAB 还能够产生其它抗菌剂,例如短链/中链脂肪酸、双乙酰基和苯基乳酸等,已知均具有抗真菌活性[44]。如苯基乳酸可以通过下调KdpB(属于P 型ATP 酶超家族的泵样亚基)抑制K+的转运、抑制群体感应系统中功能基因的表达等来起到抑菌效果[45]。由于消费者对无添加剂食品的需求不断增加,使用这些生物基化合物是确保果蔬安全和延长果蔬产品保质期的有前途的策略[16]

2 乳酸菌在果蔬产品保鲜中的应用

乳酸菌在果蔬的某些腐败微生物群中占据主导地位,因此它对果蔬及其制品的生物保存具有至关重要的潜力。乳酸菌作为潜在的抑制腐败菌的生物保护剂,在作用于果蔬及其制品时对其产生的感官品质影响和安全方面的问题是至关重要的。事实上,各种研究已经证明乳酸菌可以成功地应用于缓解各种果蔬及其制品中的真菌腐败,使其成为化学防腐剂的可行替代品,表1 总结了各种乳酸菌及其代谢产物在果蔬产品中的应用,包括果蔬产品类型、抑菌物质、靶向微生物以及应用效果。

表1 乳酸菌作为果蔬保鲜剂的应用
Table 1 Application of lactic acid bacteria as preservatives for fruit and vegetable products

总体来看,在各种果蔬原料或产品中加入乳酸菌或其代谢物,均能有效地抑制靶标菌种,且能适应大多数低温储藏环境。另外,虽然有不同的抑菌作用,但乳酸菌和它们的代谢物基本上都适合普通的果蔬制品的包装方法和处理方法。

3 潜在优势及局限性

乳酸菌作为果蔬产品的天然抗菌剂有很大的潜力,通过靶向腐败菌细胞结构或细胞稳态来抑制果蔬产品中食源性病原体的生长。与传统化学抑菌剂相比,乳酸菌不会让果蔬腐败菌产生抗药性,且对人体健康和自然环境不会造成危害,也可以为果蔬产品提供额外的预防因素。与精油等植物抑菌剂相比,乳酸菌不会对果蔬的感官品质产生不利的影响,特别是不会产生不良气味。除了减缓果蔬产品的腐败外,乳酸菌还对人类健康有益,如诱导免疫调节、防止生理应激以及改善肠道上皮的屏障功能[66]等。

在过去的10 年中,乳酸菌在抗果蔬产品腐败菌领域已经取得了非常显著的进展,然而,某些局限性仍然需要解决。虽然近年来有许多关于乳酸菌及其代谢产物抗果蔬产品腐败菌应用的研究报道,但只有少数研究调查了最终果蔬产品的质量,包括感官分析等。同时,很少有商业化的乳酸菌培养物,这可能是由于任何特定菌株的抗真菌活性都取决于许多物理化学参数、果蔬产品生产过程和菌株在果蔬产品中产生化合物的能力。乳酸菌是一种极具发展前景的果蔬保鲜剂,但要实现规模化应用,仍面临许多难题。第一,导致乳酸菌活力下降有诸多因素,果蔬制品中的组分及外界环境的变化,均可导致乳酸菌的死亡,进而导致其防腐性能下降,因此保持乳酸菌的稳定应该成为科研工作的重点;第二,针对果蔬原料,多是通过戳破水果表面造成创口来探索其防腐方法的有效性,而要实现其在果蔬表面的生防作用,则需要通过表面的生防作用来提高细菌在表面的定植能力;第三,目前关于乳酸菌及其代谢产物的毒性和抑菌机制的研究尚不深入,这可能导致潜在的毒性风险对人们的生命安全构成危害。因此,专家学者在研究其机制的同时,应进行毒理学试验研究,以明确不同乳酸菌或其代谢物的使用量、使用范围以及对人们心理和人体健康的具体影响;第四,虽然乳酸菌具有有潜在的抗菌保鲜效果,但与化学保鲜剂或精油等植物保鲜剂相比,其产量较低且不易获取,这在一定程度上限制了乳酸菌保鲜剂的工业化生产。为了克服这些限制,建议采用基因工程等技术对乳酸菌菌株进行改良,或者结合其它物理化学保鲜技术,以提高乳酸菌及其代谢产物的产量。这些措施有助于优化果蔬的抗菌保鲜效果,并实现利益的最大化。

4 结论及展望

乳酸菌可以抑制果蔬腐败菌,降低果蔬产品的腐败率。近年来,研究人员继续寻找天然防腐剂,以取代目前用于果蔬及其制品的化学防腐剂,实现更健康的饮食和生活方式。消费者对营养的认识不断提高以及对自然和健康产品需求的持续关注,导致乳酸菌及其代谢产物作为生物防腐剂的欢迎程度增加。一般来说,已被证明对果蔬腐败菌有效的乳酸菌及代谢产物的生物防腐剂,主要是细菌素和保护性培养物,它们不会对果蔬品质或感官特性产生负面影响,显示出它们作为天然抗菌剂的巨大潜力。随着人们对果蔬防腐剂安全问题的重视,开发环保安全、绿色高效的新型微生物源果蔬抗菌剂必将具有广阔的应用前景。

参考文献

[1] ISLAM J,KABIR Y.Effects and mechanisms of antioxidant-rich functional beverages on disease prevention[M]// GRUMEZESCU A M,HOLBAN A M.Functional and Medicinal Beverages.Pittsburgh:Academic Press,2019:157-198.

[2] 范双喜,陈湘宁.我国叶类蔬菜采后加工现状及展望[J].食品科学技术学报,2014,32(5):1-5.FAN S X,CHEN X N.Postharvest processing status and prospect of leafy vegetables in China [J].Journal of Food Science and Technology,2014,32(5):1-5.

[3] 张雷.果蔬采后脉冲磁场辅助低温保鲜的理论与试验研究[D].天津:天津大学,2021.ZHANG L.Theoretical and experimental study on pulsed magnetic field assisted low temperature preservation of postharvest fruits and vegetables[D].Tianjin:Tianjin University,2021.

[4] SUCHETA,SINGLA G,CHATURVEDI K,et al.Status and recent trends in fresh-cut fruits and vegetables[M]// SIDDIQUI M W.Fresh-cut fruits and vegetables.Pittsburgh:Academic Press,2020:17-49.

[5] ZHANG A,SUTAR P P,BIAN Q,et al.Pesticide residue elimination for fruits and vegetables:The mechanisms,applications,and future trends of thermal and non-thermal technologies[J].Journal of Future Foods,2022,2(3):223-240.

[6] GAN R,LI H,GUNARATNE A,et al.Effects of fermented edible seeds and their products on human health:Bioactive components and bioactivities [J].Comprehensive Reviews in Food Science and Food Safety,2017,16(3):489-531.

[7] DE ARAUZ L J,JOZALA A F,MAZZOLA P G,et al.Nisin biotechnological production and application:A review[J].Trends in Food Science &Technology,2009,20(3/4):146-154.

[8] ABDELHAMID A G,EL-DOUGDOUG N K.Controlling foodborne pathogens with natural antimicrobials by biological control and antivirulence strategies[J].Heliyon,2020,6(9):e5020.

[9] O'CONNOR P M,KUNIYOSHI T M,OLIVEIRA R P,et al.Antimicrobials for food and feed;a bacteriocin perspective[J].Current Opinion in Biotechnology,2020,61:160-167.

[10] GEETA,YADAV A S.Antioxidant and antimicrobial profile of chicken sausages prepared after fermentation of minced chicken meat with Lactobacillus plantarum and with additional dextrose and starch[J].Food Science &Technology,2017,77:249-258.

[11] 江守涛.生物防腐剂及其在食品防腐中的应用[J].食品安全导刊,2021(9):183-185.JIANG S T.Biological preservatives and their application in food preservation[J].Food Safety Guide,2021(9):183-185.

[12] SIEDLER S,BALTI R,NEVES A R.Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food[J].Current Opinion in Biotechnology,2019,56:138-146.

[13] HONORÉ A H,AUNSBJERG S D,EBRAHIMI P,et al.Metabolic footprinting for investigation of antifungal properties of Lactobacillus paracasei[J].Analytical and Bioanalytical Chemistry,2016,408(1):83-96.

[14] 胡爱心,刘金松,许英蕾,等.乳酸菌抑菌作用机制的研究进展[J].动物营养学报,2021,33(12):6690-6698.HU A X,LIU J S,XU Y L,et al.Research progress on the antibacterial mechanism of lactic acid bacteria[J].Journal of Animal Nutrition,2021,33(12):6690-6698.

[15] 王雅,姜海燕,马泽威,等.自然发酵椰子水中拮抗乳酸菌筛选鉴定及抑菌特性[J].食品研究与开发,2021,42(23):156-162.WANG Y,JIANG H Y,MA Z W,et al.Screening,identification and bacteriostatic properties of antagonistic lactic acid bacteria in naturally fermented coconut water[J].Food Research and Development,2021,42(23):156-162.

[16] COBAN H B.Organic acids as antimicrobial food agents:Applications and microbial productions [J].Bioprocess and Biosystems Engineering,2020,43(4):569-591.

[17] HATI S,MANDAL S,PRAJAPATI J.Novel starters for value added fermented dairy products[J].Current Research in Nutrition and Food Science Journal,2013,1(1):83-91.

[18] GARCÍA-DÍEZ J,SARAIVA C.Use of starter cultures in foods from animal origin to improve their safety[J].International Journal of Environmental Research and Public Health,2021,18(5):2544.

[19] ALAKOMI H L,SKYTTÄ E,SAARELA M,et al.Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane[J].Applied and Environmental Microbiology,2000,66(5):2001-2005.

[20] NARENDRANATH N V,THOMAS K C,INGLEDEW W M.Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium[J].Journal of Industrial Microbiology and Biotechnology,2001,26(3):171-177.

[21] FIDAN H,ESATBEYOGLU T,SIMAT V,et al.Recent developments of lactic acid bacteria and their metabolites on foodborne pathogens and spoilage bacteria:Facts and gaps [J].Food Bioscience,2022,47:101-741.

[22] DOULGERAKI A I,ERCOLINI D,VILLANI F,et al.Spoilage microbiota associated to the storage of raw meat in different conditions [J].International Journal of Food Microbiology,2012,157(2):130-141.

[23] JUNG S,WOO C,FUGABAN J I I,et al.Bacteriocinogenic potential of Bacillus amyloliquefaciens isolated from kimchi,a traditional Korean fermented cabbage [J].Probiotics and Antimicrobial Proteins,2021,13(4):1195-1212.

[24] YI L Y,CHEN S,LI G,et al.Prevalence of antibiotic resistance pathogens in online fresh-cut fruit from Chongqing,China and controlling Enterococcus faecalis by bacteriocin GF-15[J].LWT,2022,165:113-678.

[25] ZHANG J,GU S B,ZHANG T R,et al.Characterization and antibacterial modes of action of bacteriocins from Bacillus coagulans CGMCC 9951 against Listeria monocytogenes[J].LWT,2022,160:113272.

[26] KLAENHAMMER T R.Bacteriocins of lactic acid bacteria[J].Biochimie,1988,70(3):337-349.

[27] SINGH V P.Recent approaches in food bio-preser vation -A review[J].Open Veterinary Journal,2018,8(1):104-111.

[28] ASARE P T,ZURFLUH K,GREPPI A,et al.Reuterin demonstrates potent antimicrobial activity against a broad panel of human and poultry meat Campylobacter spp.isolates[J].Microorganisms,2020,8(1):78.

[29] SCHAEFER L,AUCHTUNG T A,HERMANS K E,et al.The antimicrobial compound reuterin(3-hydroxypropionaldehyde)induces oxidative stress via interaction with thiol groups[J].Microbiology,2010,156(6):1589-1599.

[30] MILLS J,HORVÁTH K M,BRIGHTWELL G.Antimicrobial effect of different peroxyacetic acid and hydrogen peroxide formats against spores of Clostridium estertheticum[J].Meat Science,2018,143:69-73.

[31] TEUSINK B,SMID E J.Modelling strategies for the industrial exploitation of lactic acid bacteria[J].Nature Reviews Microbiology,2006,4(1):46-56.

[32] JEAN-YVES MAILLARD,DENYER S P,MCDONNELL G,et al.Use of hydrogen peroxide as a biocide:New consideration of its mechanisms of biocidal action[J].J Antimicrob Chemother,2012,67(7):1589-1596.

[33] COMI G,TIRLONI E,ANDYANTO D,et al.Use of bio-protective cultures to improve the shelf-life and the sensorial characteristics of commercial hamburgers[J].LWT -Food Science and Technology,2015,62(2):1198-1202.

[34] NAKAJIMA H,TOBA T,ITO A,et al.The screening of hydrogen peroxide-producing lactic acid bacteria and their application to inactivating psychrotrophic food-borne pathogens[J].Current Microbiology,2003,47(3):231-236.

[35] 俞晓峰.过氧化氢杀菌机理研究的进展[J].消毒与灭菌,1988(3):149-152.YU X F.Research progress of hydrogen peroxide sterilization mechanism[J].Disinfection and Sterilization,1988(3):149-152

[36] KAMPF G,HOLLINGSWORTH A.Comprehensive bactericidal activity of an ethanol-based hand gel in 15 seconds[J].Annals of Clinical Microbiology and Antimicrobials,2008,7(1):2.

[37] YAN Y H,LI Y Z,ZHANG Z,et al.Advances of peptides for antibacterial applications[J].Colloids and Surfaces B:Biointerfaces,2021,202:111682.

[38] SHAO Z P,YANG Y,FANG S,et al.Mechanism of the antimicrobial activity of whey protein -ε -polylysine complexes against Escherichia coli and its application in sauced duck products[J].International Journal of Food Microbiology,2020,328:108663.

[39] XI Y J,SONG T,TANG S Y,et al.Preparation and antibacterial mechanism insight of polypeptidebased micelles with excellent antibacterial activities[J].Biomacromolecules,2016,17(12):3922-3930.

[40] NGUYEN L T,HANEY E F,VOGEL H J.The expanding scope of antimicrobial peptide structures and their modes of action[J].Trends in Biotechnology,2011,29(9):464-472.

[41] YEAMAN M R,YOUNT N Y.Mechanisms of antimicrobial peptide action and resistance[J].Pharmacological Reviews,2003,55(1):27-55.

[42] REINHARDT A,NEUNDORF I.Design and application of antimicrobial peptide conjugates[J].International Journal of Molecular Sciences,2016,17(5):701.

[43] HAMLEY I W.Lipopeptides:From self-assembly to bioactivity[J].Chemical Communications,2015,51(41):8574-8583.

[44] 裴家伟,吴荣荣,马静,等.乳酸菌产生的拮抗物质:一类延长食品货架期的生物防腐剂[J].中国乳品工业,2003(6):17-21.PEI J W,WU R R,MA J,et al.Antagonistic substances produced by lactic acid bacteria:A kind of biological preservatives for extending the shelf life of food[J].China Dairy Industry,2003(6):17-21.

[45] NING Y W,FU Y N,HOU L,et al.iTRAQbased quantitative proteomic analysis of synergistic antibacterial mechanism of phenyllactic acid and lactic acid against Bacillus cereus[J].Food Research International,2021,139:109562.

[46] KUMARI A,JOSHUA R,KUMAR R,et al.Biopreservation of pineapple wine using immobilized and freeze dried microcapsules of bacteriocin producing L.plantarum[J].Journal of Food Science and Technology-mysore,2022,59(2):745-753.

[47] SOTO K M,HERNÁNDEZ -ITURRIAGA M,LOARCA-PIÑA G,et al.Antimicrobial effect of nisin electrospun amaranth:Pullulan nanofibers in apple juice and fresh cheese[J].International Journal of Food Microbiology,2019,295:25-32.

[48] KHAN I,TANGO C N,MISKEEN S,et al.Evaluation of nisin-loaded chitosan-monomethyl fumaric acid nanoparticles as a direct food additive[J].Carbohydrate Polymers,2018,184:100-107.

[49] SONG Z H,YUAN Y H,NIU C,et al.Iron oxide nanoparticles functionalized with nisin for rapid inhibition and separation of Alicyclobacillus spp.[J].RSC Advances,2017,7(11):6712-6719.

[50] SATHE S J,NAWANI N N,DHAKEPHALKAR P K,et al.Antifungal lactic acid bacteria with potential to prolong shelf-life of fresh vegetables[J].Journal of Applied Microbiology,2007,103(6):2622-2628.

[51] KHANAFARI A,SOUDI H,MIRABOULFATHI M.Biocontrol of Aspergillus flavus and aflatoxin B1 production in corn[J].Iranian Journal of Environmental Health Science and Engineering,2007,4(3):163-168.

[52] YANG E J,CHANG H C.Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi[J].International Journal of Food Microbiology,2010,139(1/2):56-63.

[53] GARCHA S,NATT N K.In situ control of food spoilage fungus using Lactobacillus acidophilus NCDC 291[J].Journal of Food Science and Technology,2012,49(5):643-648.

[54] VERMA D K,THAKUR M,SINGH S,et al.Bacteriocins as antimicrobial and preservative agents in food:Biosynthesis,separation and application [J].Food Bioscience,2022,46:101594.

[55] WANG H K,YAN Y H,WANG J M,et al.Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014[J].PLoS One,2012,7(1):e29452.

[56] CROWLEY S,MAHONY J,VAN SINDEREN D.Comparative analysis of two antifungal Lactobacillus plantarum isolates and their application as bioprotectants in refrigerated foods[J].Journal of Applied Microbiology,2012,113(6):1417-1427.

[57] LAN W Z,CHEN Y S,WU H C,et al.Bio-protective potential of lactic acid bacteria isolated from fermented wax gourd[J].Folia Microbiologica,2012,57(2):99-105.

[58] UNAL TURHAN E,POLAT S,ERGINKAYA Z,et al.Investigation of synergistic antibacterial effect of organic acids and ultrasound against pathogen biofilms on lettuce[J].Food Bioscience,2022,47:101643.

[59] GARCIA A,BONILLA F,VILLASMIL E,et al.Antilisterial activity of freeze-dried bacteriocin-containing powders produced by lactic acid bacteria against Listeria innocua NRRL B -33016 on cantaloupe(Cucumis melo)surface[J].LWT,2022,154(3):112440.

[60] SHOLBERG P L.Fumigation of fruit with shortchain organic acids to reduce the potential of postharvest decay[J].Plant Disease,1998,82(6):689-693.

[61] WANG H K,SUN Y,CHEN C,et al.Genome shuffling of Lactobacillus plantarum for improving antifungal activity[J].Food Control,2013,32(2):341-347.

[62] ZHU R,LIU X Q,LI X F,et al.Transformation of inferior tomato into preservative:Fermentation by multi-bacteriocin producing Lactobacillus paracasei WX322[J].Foods,2021,10(6):1278.

[63] ROUSE S,HARNETT D,VAUGHAN A,et al.Lactic acid bacteria with potential to eliminate fungal spoilage in foods[J].Journal of Applied Microbiology,2008,104(3):915-923.

[64] DIVYASHREE S,ANJALI P G,DEEPTHI B V,et al.Black cherry fruit as a source of probiotic candidates with antimicrobial and antibiofilm activities against Salmonella[J].South African Journal of Botany,2022,150:861-872.

[65] 张宏志,马艳弘,李亚辉,等.乳酸菌发酵菊芋马齿苋复合饮料及其抑菌活性[J].江苏农业科学,2015,43(11):362-365.ZHANG H Z,MA Y H,LI Y H,et al.Lactic acid bacteria-fermented Jerusalem artichoke purslane compound beverage and its antibacterial activity[J].Jiangsu Agricultural Science,2015,43(11):362-365.

[66] SUEZ J,ZMORA N,SEGAL E,et al.The pros,cons,and many unknowns of probiotics[J].Nature Medicine,2019,25(5):716-729.

Antimicrobial Mechanism and Application of Lactic Acid Bacteria on Fruit and Vegetable Products

Wang Lu1,Jiang Shasha1,Li Dehai1*,Sun Changyan2,Li Shuxin1
1College of Life Sciences,Northeast Forestry University,Harbin 150040)2College of Materials Science and Chemical Engineering,Harbin University of Science and Technology,Harbin 150080)

Abstract As people pay more and more attention to healthy diet,fruit and vegetable products have attracted much at-tention as an important source of nutrition.However,the preservation of fruits and vegetables has always been a difficult problem.Traditional fruit and vegetable preservatives often rely on chemical substances,which not only improve the preservation effect,but also bring potential risks and adverse effects.Therefore,the development of green and effective antibacterial agents in the production and distribution chain of fruits and vegetables has become a research hotspot.In recent years,the use of lactic acid bacteria to slow down fruit and vegetable spoilage has attracted a great deal of interest.They can slow down fruit and vegetable spoilage without significant adverse effects,so the potential of lactic acid bacteria as preservatives in fruits and vegetables is enormous.However,the inhibition mechanism of lactic acid bacteria is not well studied,and the number of lactic acid bacteria or their metabolites approved by regulatory agencies and widely available for commercial use is still small,leading to their imperfect application in fruit and vegetable preservation and storage.This paper reviewed the mechanism of lactic acid bacteria inhibition,the current status of application,and the potential advantages and limitations in the inhibition of spoilage bacteria.The research progress of lactic acid bacteria as bacterial inhibitors in fruit and vegetable products in recent years was summarized,and the development direction of lactic acid bacteria was prospected in order to provide theoretical basis for the application of lactic acid bacteria in fruit and vegetable preservation.

Keywords fruits and vegetables;lactic acid bacteria;lactic acid bacteria metabolites;antibacterial

文章编号 1009-7848(2024)02-0432-10

DOI:10.16429/j.1009-7848.2024.02.039

收稿日期:2023-02-20

基金项目:黑龙江省自然科学基金项目(LH2022C007,C2015062);黑龙江省高等教育教学改革项目(SJGY20210021);黑龙江省“百千万”工程科技重大专项(2020ZX07B01-3)

第一作者:王璐,女,硕士生

通信作者:李德海 E-mail:lidehaineau@163.com