乳酸菌是一类具有丰富物种多样性的革兰氏阳性和过氧化氢酶阴性的微生物群。传统乳酸菌由不同的属组成,主要包括链球菌、乳球菌、乳杆菌和明串珠菌[1]。在发酵食品生产中,乳酸菌作为主要的一类益生菌,除了赋予食品柔和的酸味和香气外,还使乳酸菌发酵食品具有生物活性及良好的保健功能,同时提高食品的营养价值。后生元(Postbiotics)是乳酸菌产生的代谢物,被定义为对宿主健康有益、遗传背景明确的灭活微生物和/或菌体成分,包括或不包括其代谢产物[2-3]。多数研究认为它们须对宿主提供某种生理益处,并能提供类似于活性益生菌的作用[4-5]。在工业应用中,后生元被公认为优于益生菌,因为它具有明确的化学成分,较好的安全性,易用性和储存性,且适用的温度和pH 范围较宽,以及具有广谱抗菌性等优点[6]。目前,后生元被应用于众多领域,如:食品、化妆品、医药等。特定的后生元成分是发挥后生元活性功能的基础和关键。在研究和应用过程中,明确益生菌种类、培养条件及后生元的制备技术与分析方法对后生元生物活性的影响具有重要意义。
后生元被认为是由食品微生物在培养基、食物或肠道中,在生长发酵过程中,分泌的或在细胞裂解后释放的可溶性因子或乳酸菌细胞结构物质(图1),包括微生物代谢的产物/代谢副产物或乳酸菌利用培养基或食品成分后产生的物质,如生物活性肽[7-8]。
图1 乳酸菌在微生物培养基、食品和胃肠道中产生后生元的概念示意图[9]
Fig.1 Schematic diagram of postbiotics from lactic acid bacteria in microbiological culture,food and gastrointestinal tract[9]
为了制备后生元,人们通常会对细胞进行灭活或去除等处理,即制备无细胞上清液。在后生元制备过程中,菌种类型、培养基类型、细胞后处理方式等都成为影响后生元种类和浓度的关键因素。
通常情况下,通过对获得的后生元混合物进行离心或超滤处理,能够将细菌细胞和后生元代谢产物分离[10]。此外,还可以通过酶解、热处理、超声处理和高压处理等方式将生长繁殖后的细菌细胞进行裂解。图2 总结了制备乳酸菌后生元制剂的5 个步骤[11-13]。经过上述处理,一些额外的胞内代谢物和细胞壁衍生物会被引入到后生元混合物中,并赋予新制备的后生元其它生物活性。
图2 制备乳酸菌后生元制剂的5 个步骤[9]
Fig.2 Five steps of preparing postbiotics form lactic acid bacteria[9]
无论采取何种细胞后处理方式,在实验室和工业水平上,后生元制剂的制备都需要考虑以下几个要点:1)发酵培养基的选择;2)细菌培养方式;3)产物提取和浓缩方法;4)产物保存和应用方法。通常情况下,实验室和工业生产中主要利用乳酸菌作为初级或次级发酵剂用于后生元的制备,这个过程中最需要关注的是最终产品的安全性。
目前,常见的后生元制备步骤如表1 所示,通常情况下,首先在培养基(主要是MRS 肉汤)中培养乳酸菌,之后是提取步骤,即在4 ℃以4 000~12 000×g 离心力离心10 min 或透析(图2)[6,14]。利用MRS 制备后生元并去除细菌细胞后,可以获得颜色呈棕色至棕黄色的酸性发酵产物(图3)[15]。
图3 利用唾液联合乳杆菌在MRS 肉汤中培养获得的后生元溶液(a)和冻干后生元(b)[15]
Fig.3 Postbiotic solution(a)and freeze-dried postbiotic(b)obtained by Lb.salibarius culture in MRS broth[15]
在后生元的工业规模生产中,存在其它培养物替代MRS 用于乳酸菌的培养。Garnier 等[22]为了制备应用于食品的抗真菌后生元制剂,分别利用低温乳和乳渗透物作为乳酸杆菌的发酵底物,由于蛋白质和脂肪含量的差异,在低温乳中制备的后生元混合物表现出显著的抗真菌活性。在这两种底物上制备的后生元都能够很好地应用于乳制品。脱脂牛乳(质量分数10%)也已成功应用于工业化规模生产辅助培养物(DSM-100H)的后生元[15]。此外,一些乳制品替代基质,如乳清和乳酪等作为不同商业益生菌生长繁殖培养基也在不断发展[19]。利用性价比高的动植物副产品(如乳清培养基)取代传统的MRS 肉汤,也是未来后生元制备发展的趋势之一。
后生元制剂的形式多样,最常见的为溶液形式及通过喷雾干燥或者冻干技术制成干粉形式[26]。为了获得贮藏期较长的后生元制剂,喷雾干燥和冻干技术成为后生元主要的保存方法。通常与后生元溶液相比,糊状冻干后生元表现出更强的抗菌活性,并能获得水分含量较低的食品[27]。此外,在食品表面喷洒后生元以抑制腐败和病原体微生物的生长也是一种有效的替代方法[22]。后生元溶液通常用0.22 μm 或0.45 μm 孔径的过滤器过滤除菌,在使用前溶液需保持在-20~-80 ℃的温度范围内。对于通过冻干和喷雾干燥得到的浓缩物需在使用前灭菌,并利用无菌缓冲溶液(磷酸盐缓冲液,0.01 mol/L 磷酸盐,pH 7.2)重悬糊状后生元[28]。由于后生元的活性效果与其所应用其中的体系紧密相关,因此在实验室及工业上应用后生元制剂的方法常常取决于食品类型。
由于特定的后生元成分是发挥后生元活性功能的基础和关键,因此,首先应该通过化学成分分析初步获得后生元成分信息,即使用分析技术检测后生元和具有拮抗活性的分子数量和质量[7],这有助于研究源自乳酸菌的后生元的代谢物[29],并明确对食品产生有益影响的后生元的组分及其功能。当前,已有大量的仪器和创新方法用于后生元的定性和定量分析,通常根据分析目标和表征类型来选择合适的分析方法。
气相色谱(Gas chromatography,GC)是最常见的用于定量和定性分析后生元中游离脂肪酸、挥发性化合物(例如:二乙酰、乙偶姻和二甲基砜、2-丁酮)和有机酸的分析工具。Mohammadi 等[30]利用MRS 培养基以及冻干技术制备后生元制剂,并对其进行气相色谱-质谱联用(Gas chromatographmass spectrometer,GC-MS)分析,揭示了脂肪酸、烷烃、醛类、烃类脂肪酸酯以及某些抗细菌和抗真菌化合物的存在,如2,4-二叔丁基苯酚和正三十二烷。根据样品类型和检测技术,在GC-MS 分析之前通常需要经过前处理。Patil 等[31]运用配备火焰离子化检测器(Gas chromatography-flame ionization detector,GC-FID)的GC 来检测嗜酸乳杆菌、瑞士乳杆菌、大肠杆菌、粪肠球菌的后生元中短链脂肪酸含量。在利用GC-FID 分析短链脂肪酸之前,需要通过三氟化硼-乙醇复合物对脂肪酸进行衍生化。由于GC 技术的高效能、高选择性以及高灵敏度等优势,GC 技术成为获取后生元信息的重要手段,而GC 技术与其它技术联用进一步在可靠性、特异性和抗干扰性等方面得到明显提升。
高效液相色谱(High performance liquid chromatography,HPLC)也是用于定性和定量分析乳酸菌后生元化学成分最常用的技术之一。HPLC技术能够同时分析后生元中各种不同的有机酸(乙酸、苹果酸、乳酸、乙酸和其它酸)。高效液相色谱法与其它检测技术的联合使用,如紫外(Ultraviolet,UV)、紫外二极管阵列检 测(Ultraviolet/Diode array detector,UV/DAD)、折射率(Refractive index,RI)、质谱(Mass spectrum,MS)和脉冲电化学检测(Pulse electrochemical detection,PED),是采用高效液相色谱分析成功的关键[32]。例如,Axel等[33]使用HPLC-UV/DAD 对嗜淀粉乳杆菌DSM19280 发酵产生的抗真菌成分进行定量分析,发现与非抗真菌菌株相比,嗜淀粉乳杆菌DSM19280 发酵产物中的4-羟基苯乙酸、对羟基苯丙酸、3-苯基乳酸和氢氟酸的浓度显著增加(P<0.01)。
超高效液相色谱(Ultra performance liquid chromatography,UPLC)是另一个十分有效的方法,由于其高效、高分辨率、高灵敏度和准确度高,以及溶剂使用量低的特点,具有优越的后生元分离和鉴定能力[7]。Wang 等[34]通过配备有四极离子阱质谱仪的UPLC 系统对植物乳杆菌IMAU10014中存在的抗真菌化合物(3-苯基乳酸、苯乙酸和2-丙烯酯)进行定性分析。首次报道了乳酸菌能够产生抗真菌作用的苯乙酸-2-丙烯酯。Brosnan等[35]结合QuEChERS(Quick、Easy、Cheap、Effective、Rugged、Safe)提取天然抗真菌代谢产物的方法,利用液相色谱线性离子阱四极轨道混合傅里叶变换质谱仪(Liquid chromatography linear ion trap quadrupole orbital hybrid Fourier transform mass spectrometer,LC-FTMS)分析了乳酸菌培养物中的代谢物,显著提高了抗真菌化合物图谱的分析能力。值得注意的是,分析方法会影响后生元中代谢物的类型和数量。例如,在魏斯氏菌后生元的GC-MS 分析结果中,显示存在油酸和棕榈酸,而在HPLC 分析结果中,只存在乳酸和柠檬酸[36]。因此,对于后生元成分的分析往往不只局限于单一技术,多种技术和程序结合分析的方式往往具有更优的效果,尤其体现在试验结果的可信度方面。
与其它色谱技术相比,薄层色谱法(Thin layer chromatography,TLC)具有快速、简便、成本更低等优点。薄层色谱法通常与光谱或色谱分析方法相结合,被广泛用于细菌生物表面活性剂的分离和结构测定,例如,使用Syldatk、钼酸铵或茚三酮试剂(喷洒在薄层板表面)的比色方法已分别用于生物活性剂成分、脂质成分和氨基酸的鉴定[37]。此外,Sharma 等[38]通过薄层分析法表征来自乳酸杆菌属的生物表面活性剂的成分,并通过显色化合物进行色谱检测分析,试验结果证实了瑞士乳杆菌产生的后生元中存在多糖和脂质结合的糖脂。相比于气相色谱和液相色谱法,薄层色谱法具有独特的优势。薄层色谱法显色清晰,结果直观,同时作为开放型色谱,固定相、流动相以及试剂的选择范围更广,易于实现多样品的平行检测,这也决定了薄层色谱法在后生元成分分析方面是不可或缺的,然而外界的环境条件以及实验人员的操作技术会对结果的灵敏度和重现性造成一定影响。
分光光度法可用于测定特定乳酸菌后生元中的过氧化氢浓度。此外,乳酸菌后生元中总蛋白质的量也可以通过考马斯亮蓝比法色测定,染料考马斯亮蓝G-250 与蛋白质的结合导致样品颜色从红色变为蓝色(吸收峰波长从465 nm 到595 nm),在波长595 nm 处测得的吸光度变化与蛋白质的量成正比[39]。在标准方法中,后生元的蛋白酶活性也可使用分光光度法测定。在该方法中,偶氮酪蛋白用作显色底物,以波长440 nm 处的吸光度值随时间延长的增加量来衡量蛋白酶的活性[40]。比色法也被用于定量分析吸收峰在波长480~900 nm 附近的胞外多糖[41]和乳酸菌后生元中的碱性磷酸酶[42]。分光光度法实现了后生元成分简易、快速且低成本的检测,然而由于检测成分往往需要添加额外的显色试剂,对于无显色反应的后生元成分物质的检测存在局限性,这在一定程度上限制了分光光度法的检测范围。
核磁共振技术(Nuclear magnetic resonance,NMR)也是能提供关于后生元提取物的生物代谢物结构、动力学和相互作用等关键信息的强大工具。最常见的核磁共振类型是质子和碳-13 核磁共振波谱成像,它可以应用于任何具有自旋原子核样品的分析,有助于获取有关乳酸菌后生元代谢物的信息。例如,Lin 等[43]利用1H NMR 和13C NMR 证实了植物乳杆菌NTU102 的后生元中存在抑菌物质2-(2-1-氨基-1-羟乙氧基)2-甲基丙酸乙酯。Wang 等[34]通过1H NMR 和13C NMR 分析出植物乳杆菌IMAU10014 的MRS 培养基中存在抗真菌物质苯乙酸和2-丙烯酯。相比于其它分析技术,NMR 方法凸显了良好的灵敏性、准确性,以及不需要前处理的简便性,而相对费用较为昂贵。
傅里叶变换红外(Fourier transform infrared,FTIR)光谱分析是一种有效的表征技术,已被用于有机和无机成分的检测、分类和鉴定中。该技术是一种灵敏、快速、方便、成熟、无试剂、无损且具有成本效益的方法。近年来,FTIR 也常常被用于后生元代谢物的定性分析。例如,Shafipour 等[44]利用FTIR 检测来自植物乳杆菌的冻干后生元对单增李斯特菌的抗菌活性,结果表明利用细菌纳米纤维素固定的后生元抑制单增李斯特菌能力增强。Trabelsi 等[45]运用FTIR 分析技术监测乳酸菌生长过程中胞外多糖的产生情况,并研究乳酸菌胞外多糖的羧基、羟基和酰胺基的存在。FTIR 具有特征性强,分析快速,灵敏度较高,应用范围广等特点,在已知物及未知物鉴定、物质的定量分析上起着至关重要的作用。此外,由于FTIR 与其它技术联合检测的定性功能强,可以拓展红外光谱法在后生元检测方面的应用领域。
除了上文涉及到的技术方法以外,一些新的技术也在不断发展,被用于后生元组分的定性和定量分析[46]。例如,利用基质辅助激光解吸/飞行时间质谱法(Matrix-assisted laser desorption/ionization time-of-flight,MALDI-TOF)鉴定乳酸杆菌后生元蛋白质成分;利用电喷雾电离质谱(Electrospray ionization mass spectrometry,ESI-MS)鉴定乳酸杆菌代谢物的分子质量。一些特定的酶试剂盒也可对乙酸和D-/L-乳酸进行定量检测。越来越多的研究者针对后生元的组分研究采用精准分析和高效检测的简便方法,表2 总结了近年来用于后生元化学成分分析的技术方法,这些研究方法可为后生元更好地发挥其生物活性提供良好的思路。
表2 不同乳酸菌菌株产生的主要抑菌物质
Table 2 Main antibacterial substances produced by different lactic acid bacteria strains
(续表2)
由于后生元被应用于众多领域,市售的后生元具有不同的用途,其中比较显著的是乳酸菌生长发酵过程中能够产生许多可以抑制其它微生物生长的物质。
从食品安全和质量的角度来看,乳酸菌的抗菌物质具有重要意义,一些抗菌代谢物广泛应用于许多行业中,例如:乳酸菌产生的有机酸及抗菌肽等被用作无毒、安全、天然的食品防腐剂[71]。Toushik 等[72]将肠膜明串珠菌与丁香酚、百里酚联合使用,有效抑制了海鲜产品中病原微生物生物膜的形成。细菌素、有机酸、酶、醇和低分子质量物质(例如从罗伊氏乳杆菌中提取的罗伊氏蛋白)是乳酸菌起到抗菌作用的主要代谢物,其中细菌素是研究最多的后生元代谢物[73-74]。益生菌培养物中的后生元是细菌素和类细菌素抑制物质的丰富来源,对主要的食源性病原菌具有抑制作用。
直接在食品中添加具有活菌的发酵剂或益生菌培养物的难点在于它们与不同的基质和环境不相容,阻碍了活菌在食品中的生长和存活。使用后生元代替活菌微生物可避免主要发酵剂和次要发酵剂与食物之间的负面作用,充分利用后生元的广谱抗菌性,有机酸和其它代谢物之间的协同作用以及后生元混合物的热稳定性[75-76]。
不同乳酸菌菌株发酵产物存在差异,后生元的抗菌特性与后生元中的有机酸含量息息相关。乳酸菌发酵产生有机酸主要是一种特定于菌属的现象,部分是特定于菌种的现象[77]。例如,乳酸杆菌和双歧杆菌的乳酸产量显著高于乙酸产量[78]。此外,有研究指出细菌菌株还可以被改造而分泌独特重组代谢物,用于食品、动物饲养和人体健康等方面[79]。因此,后生元也不仅限于利用传统菌种来生产,未来可以通过分子生物学技术、基因组学技术等现代生物技术,构建生产特定后生元物质的高效菌株,能够解决后生元产量少、种类单一等问题,为扩大后生元的应用范围和功能性产品的开发提供参考。
培养基成分和培养条件也会影响乳酸菌产生的代谢物[26]。例如,乳酸菌产生有机酸受到培养时间和培养条件的影响。各种不同乳酸菌菌株在鳀鱼浸液肉汤中培养时,有机酸(乳酸、乙酸、琥珀酸和甲酸)的产量显著高于在MRS 肉汤中培养时的产量[51]。Yilmaz 等[80]在LDB 中加入50%及70%的乳酸菌后生元,检测二胺(尸胺、腐胺)、多胺(胍丁胺、亚精胺、精胺、氨)和其它病原体形成的生物胺含量,结果表明乳酸菌的后生元可以有效降解生物胺,其中,后生元使大肠杆菌产生的尸胺减少了67%。
此外,在植物乳杆菌培养基中添加亚油酸会产生一种名为10-羟基-顺式-12-十八碳烯酸(HYA)的治疗物质[81]。Toushik 等[82]研究发现弯曲乳杆菌B67 产生的后生元和多酚黄烷醇槲皮素的组合对单核细胞增生李斯特菌和鼠伤寒沙门氏菌有良好的抑制作用以及抗生物膜功效。因此,改变培养基组分也会对后生元成分或活性功能产生影响,这为更好地发挥后生元活性功能提供了新的思路。
一些研究倾向于支持多菌株的混合物比单菌株更有效的假设。根据群体感应机制,乳酸菌可以在有益微生物甚至病原微生物存在的情况下,调节后生元中特定抗菌物质的产生[83]。共培养可以促进核糖体合成的抗菌物质,如细菌素在乳酸菌中的表达[84],甚至可以获得新的抗菌物质。据研究,在甜菜糖蜜中存在解脂耶氏酵母(Yarrowia lipolytica)的情况下,乳酸乳球菌乳酸亚种的乳链菌肽的产量提高了50%[85]。此外,乳酸乳球菌乳酸亚种在与有害病原体(如单核细胞增生李斯特菌和沙门氏菌肠杆菌)共培养时,产生的后生元富含活性乳酸链球菌素[83]。共培养策略为微生物产生新的代谢产物及改善后生元活性功能提供了机会。
后生元在食品中应用会采用不同的处理方式,如冻干或喷雾干燥。这些提取加工操作会对后生元的组成造成影响,可能会降低后生元的活性。例如,喷雾干燥法会去除挥发性代谢物,如乙醇[86]。Koohestani 等[20]通过研究发现后生元代谢物的稳定性会随着时间的推移和贮存条件的改变而发生变化。Mehran 等[69]通过试验证明pH 值的升高会对后生元的抗菌性能造成不利影响。因此,在后生元应用于食品时,需要结合后生元特性及食品特性选择合适的后处理方法,尽可能避免不利影响的产生。
综上所述,不同细菌种类、培养条件和策略及制备加工分析方法对后生元的成分组成和活性功能的影响不同。因此,制备后生元制剂时,应在单一条件优化的基础上整合,选择恰当的培养条件和合适的加工技术,获得更为高效的制备效果,从而发挥后生元的最大效用。
后生元在食品工业中是一个相对较新的概念,未来有望将后生元应用于生物膜去除、食品化学污染物的生物降解以及制备纳米材料等领域。因此,需要建立后生元化学分析的标准方法,借助高科技仪器进行未知化学成分的鉴定,结合多种仪器和技术方法提高分析结果的准确性。菌种、培养条件及策略、后处理手段等因素或环节都会对后生元的化学成分及活性功能产生不同的影响。鉴于此,如何将上述条件进行整合,发挥后生元的最大效用是现今研究的重点,为后生元更有效地在食品中应用提供了新的方法和思路。
虽然经过分离的后生元代谢物已得到应用,但其在食品领域的一些应用仍存在缺陷。例如,一些乳酸菌在食品贮存过程中会产生生物胺。因此,将后生元应用到食品中之前需要对其各个成分含量进行准确的分析测量。此外,后生元发挥益生功能的有效剂量以及作用机制还有待深入探索,需逐步建立后生元的健康作用与量效关系的询证方法,以此产出围绕后生元产品的前沿科研成果,提高后生元及后生元产品的综合竞争力。
[1] ERDOGAN F S,OZARSLAN S,GUZEL-SEYDIM Z B,et al.The effect of kefir produced from natural kefir grains on the intestinal microbial populations and antioxidant capacities of Balb/c mice[J].Food Research International,2019,115:408-413.
[2] MARTÍN R,LANGELLA P.Emerging health concepts in the probiotics field:streamlining the definitions[J].Frontiers in Microbiology,2019,10:1047.
[3] SALMINEN S,COLLADO M C,ENDO A,et al.The international scientific association of probiotics and prebiotics(ISAPP)consensus statement on the definition and scope of postbiotics[J].Nature Reviews Gastroenterology &Hepatology,Nature Publishing Group,2022,19(8):551.
[4] MALAGÓN-ROJAS J N,MANTZIARI A,SALMINEN S,et al.Postbiotics for preventing and treating common infectious diseases in children:A systematic review[J].Nutrients,2020,12(2):389.
[5] TEAME T,WANG A R,XIE M X,et al.Paraprobiotics and postbiotics of probiotic Lactobacilli,their positive effects on the host and action mechanisms:A review[J].Frontiers in Nutrition,2020,7:570344.
[6] BARROS C P,GUIMARÃES J T,ESMERINO E A,et al.Paraprobiotics and postbiotics:Concepts and potential applications in dairy products[J].Current Opinion in Food Science,2020,32:1-8.
[7] AGUILAR -TOALÁ J E,GARCIA -VARELA R,GARCIA H S,et al.Postbiotics:An evolving term within the functional foods field[J].Trends in Food Science &Technology,2018,75:105-114.
[8] ÓŁKIEWICZ J,MARZEC A,RUSZCZY
SKI M,et al.Postbiotics-a step beyond pre-and probiotics[J].Nutrients,2020,12(8):2189.
[9] MEHRAN M,RAHIM M,JONAS T G.A review on preparation and chemical analysis of postbiotics from lactic acid bacteria[J].Enzyme and Microbial Technology,2021,143(12):109722.
[10] CUEVAS -GONZÁLEZ P F,LICEAGA A M,AGUILAR-TOALÁ J E.Postbiotics and paraprobiotics:From concepts to applications[J].Food Research International,2020,136:109502.
[11] HERNÁNDEZ-GRANADOS M J,FRANCO-ROBLES E.Postbiotics in human health:Possible new functional ingredients?[J].Food Research International,2020,137:109660.
[12] CUEVAS-GONZÁLEZ P F,AGUILAR-TOALÁ J E,GARCÍA H S,et al.Protective effect of the intracellular content from potential probiotic bacteria against oxidative damage induced by acrylamide in human erythrocytes[J].Probiotics and Antimicrobial Proteins,2020,12(4):1459-1470.
[13] GONZÁLEZ-GONZÁLEZ J N,VALLEJO-CORDOBA B,GONZÁLEZ-CÓRDOVA A F,et al.Effect of the intracellular content from Lactobacillus casei CRL -431 on the antioxidant properties of breast milk:Randomized double-blind controlled trial[J].LWT,2020,130(1):109672.
[14] GÓMEZ-SALA B,HERRANZ C,DÍAZ-FREITAS B,et al.Strategies to increase the hygienic and economic value of fresh fish:Biopreservation using lactic acid bacteria of marine origin[J].International Journal of Food Microbiology,2016,223:41-49.
[15] MORADI M,TAJIK H,MARDANI K,et al.Efficacy of lyophilized cell-free supernatant of Lactobacillus salivarius(Ls-BU2)on Escherichia coli and shelf life of ground beef[J].Veterinary Research Forum,Faculty of Veterinary Medicine,Urmia University,2019,10(3):193-198.
[16] EL-MOKHTAR M A,HASSANEIN K M,AHMED A S,et al.Antagonistic activities of cell-free supernatants of Lactobacilli against extended-spectrum β-lactamase producing Klebsiella pneumoniae and Pseudomonas aeruginosa [J].Infection and Drug Resistance,2020,13:543-552.
[17] NIHARIKA S,CHETAN S,DEVIDAS G R,et al.Inhibitory effects of Lactobacilli of goat's milk origin against growth and biofilm formation by pathogens:An in vitro study[J].Food Bioscience,2018,22:129-138.
[18] TOY N,ÖZOGUL F,ÖZOGUL Y.The influence of the cell free solution of lactic acid bacteria on tyramine production by food borne-pathogens in tyrosine decarboxylase broth[J].Food Chemistry,2015,173:45-53.
[19] PATRICIA B,GABRIEL V,FERNANDO M,et al.Suitability of whey and buttermilk for the growth and frozen storage of probiotic Lactobacilli[J].International Journal of Dairy Technology,2008,61(2):156-164.
[20] KOOHESTANI M,MORADI M,TAJIK H,et al.Effects of cell-free supernatant of Lactobacillus acidophilus LA5 and Lactobacillus casei 431 against planktonic form and biofilm of Staphylococcus aureus[J].Veterinary Research Forum:An International Quarterly Journal,2018,9(4):301-306.
[21] SHEHATA M G,BADR A N,SOHAIMY S A E,et al.Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives[J].Annals of Agricultural Science,2019,64(1):71.
[22] GARNIER L,MOUNIER J,LÊ S,et al.Development of antifungal ingredients for dairy products:From in vitro screening to pilot scale application[J].Food Microbiology,2019,81:97-107.
[23] XIE C,WANG H H,DENG S L,et al.The inhibition of cell-free supernatant of Lactobacillus plantarum on production of putrescine and cadaverine by four amine-positive bacteria in vitro[J].LWT-Food Science &Technology,2016,67:106-111.
[24] KOUSHEH S A,MORADI M,TAJIK H,et al.Preparation of antimicrobial/ultraviolet protective bacterial nanocellulose film with carbon dots synthesized from lactic acid bacteria[J].International Journal of Biological Macromolecules,2020,155:216-225.
[25] BERISTAIN -BAUZA S C,MANI -LÓPEZ E,PALOU E,et al.Antimicrobial activity and physical properties of protein films added with cell-free supernatant of Lactobacillus rhamnosus[J].Food Control,2016,62:44-51.
[26] FOO H L,LOH T C,ABDUL MUTALIB N E,et al.The myth and therapeutic potentials of postbiotics[M]//Microbiome and Metabolome in Diagnosis,Therapy,and Other Strategic Applications,New York:Academic Press,2019:201-208.
[27] KYUNG K O,MIN K S,SUN-HEE K.Antimicrobial potential of Leuconostoc species against E-coli O157:H7 in ground meat[J].Journal of the Korean Society for Applied Biological Chemistry,2015,58(6):831-838.
[28] SARABANDI K,JAFARI S M.Effect of chitosan coating on the properties of nanoliposomes loaded with oyster protein hydrolysates:Stability during spray-drying and freeze-drying[J].Food Chemistry,2022,310:125951.
[29] CHALUVADI S,HOTCHKISS A T,YAM K L.Gut microbiota:Impact of probiotics,prebiotics,synbiotics,pharmabiotics,and postbiotics on human health[M]// Probiotics,prebiotics,and synbiotics:Bioactive foods in health promotion,New York:Academic Press,2015:515-523.
[30] MOHAMMADI R,MORADI M,TAJIK H,et al.Potential application of postbiotics metabolites from bioprotective culture to fabricate bacterial nanocellulose based antimicrobial packaging material[J].International Journal of Biological Macromolecules,2022,220(27):528-536.
[31] PATIL S,SAWANT S,HAUFF K,et al.Validated postbiotic screening confirms presence of physiologically-active metabolites,such as short-chain fatty acids,amino acids and vitamins in Hylak Forte[J].Probiotics and Antimicrobial Proteins,2019,11(4):1124-1131.
[32] DAS D,GOYAL A.Lactic acid bacteria in food industry[M].Microorganisms in Sustainable Agriculture and Biotechnology,Dordrecht:Springer Netherlands,2012:757-772.
[33] AXEL C,RÖCKER B,BROSNAN B,et al.Application of Lactobacillus amylovorus DSM19280 in gluten-free sourdough bread to improve the microbial shelf life[J].Food Microbiology,2015,47:36-44.
[34] WANG H K,YAN Y H,WANG J M,et al.Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014[J].PloS One,2012,7(1):e29452.
[35] BROSNAN B,COFFEY A,ARENDT E K,et al.The QuEChERS approach in a novel application for the identification of antifungal compounds produced by lactic acid bacteria cultures[J].Talanta,2014,129:364-373.
[36] LEE S B,RHEE Y K,GU E J,et al.Massbased metabolomic analysis of Lactobacillus sakei and its growth media at different growth phases[J].Journal of Microbiology and Biotechnology,2017,27(5):925-932.
[37] SHARMA D,SAHARAN B S,CHAUHAN N,et al.Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium[J].Springer Plus,2015,4(4):1-14.
[38] SHARMA D,SAHARAN B S,CHAUHAN N,et al.Production and structural characterization of Lactobacillus helveticus derived biosurfactant [J].The Scientific World Journal,2014,2014:493548.
[39] HOR Y Y,LIONG M T.Use of extracellular extracts of lactic acid bacteria and Bifidobacteria for the inhibition of dermatological pathogen Staphylococcus aureus[J].Dermatologica Sinica,2014,32(3):141-147.
[40] AYYASH M M,SHERKAT F,SHAH N P.The effect of NaCl substitution with KCl on proteinase activities of cell-free extract and cell-free supernatant at different pH levels and salt concentrations:Lactobacillus acidophilus and Lactobacillus casei[J].Journal of Dairy Science,2013,96(1):40-49.
[41] RÜHMANN B,SCHMID J,SIEBER V.Methods to identify the unexplored diversity of microbial exopolysaccharides[J].Frontiers in Microbiology,2015,6:565.
[42] ZHANG Y H,XU D,LIU J Q,et al.Enhanced degradation of five organophosphorus pesticides in skimmed milk by lactic acid bacteria and its potential relationship with phosphatase production[J].Food Chemistry,2014,164:173-178.
[43] LIN T H,PAN T M.Characterization of an antimicrobial substance produced by Lactobacillus plantarum NTU 102[J].Journal of Microbiology,Immunology and Infection,2019,52(3):409-417.
[44] SHAFIPOUR Y A,MORADI M,TAJIK H,et al.Design and preparation of antimicrobial meat wrapping nanopaper with bacterial cellulose and postbiotics of lactic acid bacteria[J].International Journal of Food Microbiology,2020,321:108561.
[45] TRABELSI I,SLIMA S B,CHAABANE H,et al.Purification and characterization of a novel exopolysaccharides produced by Lactobacillus sp.Ca6[J].International Journal of Biological Macromolecules,2015,74:541-546.
[46] AHMAD R I,SEO B J,REJISH K V J,et al.Isolation and characterization of a proteinaceous antifungal compound from Lactobacillus plantarum YML007 and its application as a food preservative[J].Letters in Applied Microbiology,2013,57(1):69-76.
[47] LEE J Y,NGUYEN D T,PARK Y S,et al.Organic acid profiling analysis in culture media of lactic acid bacteria by gas chromatography-mass spectrometry[J].Mass Spectrometry Letters,2012,3(3):74-77.
[48] HU C H,REN L Q,ZHOU Y,et al.Characterization of antimicrobial activity of three Lactobacillus plantarum strains isolated from Chinese traditional dairy food[J].Food Science &Nutrition,2019,7(6):1997-2005.
[49] GEORGE-OKAFOR U,OZOANI U,TASIE F,et al.The efficacy of cell-free supernatants from Lactobacillus plantarum Cs and Lactobacillus acidophilus ATCC 314 for the preservation of home-processed tomato-paste[J].Scientific African,2020,8:e00395.
[50] PELYUNTHA W,CHAIYASUT C,KANTACHOTE D,et al.Organic acids and 2,4-Di-tert-butylphenol:Major compounds of Weissella confusa WM36 cell-free supernatant against growth,survival and virulence of Salmonella typhi[J].PeerJ,2020,8(5):e8410.
[51] OZCELIK S,KULEY E,ÖZOGUL F.Formation of lactic,acetic,succinic,propionic,formic and butyric acid by lactic acid bacteria[J].LWT,2016,73:536-542.
[52] BROBERG A,JACOBSSON K,STRÖM K,et al.Metabolite profiles of lactic acid bacteria in grass silage[J].Applied and Environmental Microbiology,2007,73(17):5547-5552.
[53] YÉPEZ A,LUZ C,MECA G,et al.Biopreservation potential of lactic acid bacteria from Andean fermented food of vegetal origin[J].Food Control,2017,78:393-400.
[54] BROSNAN B,COFFEY A,ARENDT E K,et al.Rapid identification,by use of the LTQ Orbitrap hybrid FT mass spectrometer,of antifungal compounds produced by lactic acid bacteria[J].Analytical and Bioanalytical Chemistry,2012,403(10):2983-2995.
[55] GUIMARÃES A,VENANCIO A,ABRUNHOSA L.Antifungal effect of organic acids from lactic acid bacteria on Penicillium nordicum[J].Food Additives&Contaminants.Part A,Chemistry,Analysis,Control,Exposure &Risk Assessment,2018,35(9):1803-1818.
[56] LEE S B,RHEE Y K,GU E J,et al.Massbased metabolomic analysis of Lactobacillus sakei and its growth media at different growth phases[J].Journal of Microbiology and Biotechnology,2017,27(5):925-932.
[57] GUO J,BROSNAN B,FUREY A,et al.Antifungal activity of Lactobacillus against Microsporum canis,Microsporum gypseum and Epidermophyton floccosum[J].Bioengineered Bugs,2012,3(2):104-113.
[58] CHEN M M,LI A L,SUN M C,et al.Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus[J].Journal of Zhejiang University SCIENCE B,2014,15(4):333-342.
[59] PENG M,TABASHSUM Z,PATEL P,et al.Linoleic acids overproducing Lactobacillus casei limits growth,survival,and virulence of Salmonella typhimurium and enterohaemorrhagic Escherichia coli[J].Frontiers in Microbiology,2018,9(4):2663.
[60] SJÖGREN J,MAGNUSSON J,BROBERG A,et al.Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14[J].Applied and Environmental Microbiology,2003,69(12):7554-7557.
[61] RASHEED H A,TUOHETI T,ZHANG Y Z,et al.Purification and partial characterization of a novel bacteriocin produced by bacteriocinogenic Lactobacillus fermentum BZ532 isolated from Chinese fermented cereal beverage(Bozai)[J].LWT,2020,124:109113.
[62] PEI J J,JIN W G,ABD EL-ATY A M,et al.Isolation,purification,and structural identification of a new bacteriocin made by Lactobacillus plantarum found in conventional kombucha[J].Food Control,2020,2020:106923.
[63] ZHU Q,SUN H M,ZHOU Q Q,et al.Characterization and antibacterial action mode of bacteriocin BMP32r and its application as antimicrobial agent for the therapy of multidrug-resistant bacterial infection[J].International Journal of Biological Macromolecules,2020,164(Pt.1):845-854.
[64] LV X R,MA H H,SUN M T,et al.A novel bacteriocin DY4-2 produced by Lactobacillus plantarum from cutlassfish and its application as biopreservative for the control of Pseudomonas fluorescens in fresh turbot(Scophthalmus maximus)fillets[J].Food Control,2018,89:22-31.
[65] WAYAH S B,PHILIP K.Purification,characterization,mode of action,and enhanced production of Salivaricin mmaye1,a novel bacteriocin from Lactobacillus salivarius SPW1 of human gut origin [J].Electronic Journal of Biotechnology,2018,35:39-47.
[66] FUOCHI V,CONIGLIO M A,LAGHI L,et al.Metabolic characterization of supernatants produced by Lactobacillus spp.with in vitro anti-Legionella activity [J].Frontiers in Microbiology,2019,10:1403.
[67] AUNSBJERG S D,HONORÉ A H,MARCUSSEN J,et al.Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt[J].International Journal of Food Microbiology,2015,194:46-53.
[68] SIEDLER S,BALTI R,NEVES A R.Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food[J].Current Opinion in Biotechnology,2019,56:138-146.
[69] MEHRAN M,KARIM M,HOSSEIN T.Characterization and application of postbiotics of Lactobacillus spp.on Listeria monocytogenes in vitro and in food models[J].LWT-Food Science &Technology,2019,111:457-464.
[70] HAMAD G M,ABDELMOTILIB N M,DARWISH A M G,et al.Commercial probiotic cell-free supernatants for inhibition of Clostridium perfringens poultry meat infection in Egypt[J].Anaerobe,2020,62:102181.
[71] FIDAN H,ESATBEYOGLU T,SIMAT V,et al.Recent developments of lactic acid bacteria and their metabolites on foodborne pathogens and spoilage bacteria:Facts and gaps [J].Food Bioscience,2022,47:101741.
[72] TOUSHIK S H,PARK J H,KIM K,et al.Antibiofilm efficacy of Leuconostoc mesenteroides J.27-derived postbiotic and food-grade essential oils against Vibrio parahaemolyticus,Pseudomonas aeruginosa,and Escherichia coli alone and in combination,and their application as a green preservative in the seafood industry[J].Food Research International,2022,156:111163.
[73] O'BRYAN C A,KOO O K,SOSTRIN M L,et al.Characteristics of bacteriocins and use as food antimicrobials in the United States[M].Food and Feed Safety Systems and Analysis,New York:Academic Press,2018:273-286.
[74] RAZAVI R S M,MORADI M,MEHDIZADEH T,et al.The effect of nisin and garlic(Allium sativum L.)essential oil separately and in combination on the growth of Listeria monocytogenes[J].LWT -Food Science and Technology,2011,44(10):2260-2265.
[75] MORADI M,KOUSHEH S A,ALMASI H,et al.Postbiotics produced by lactic acid bacteria:The next frontier in food safety[J].Comprehensive Reviews in Food Science and Food Safety,2020,19(6):3390-3415.
[76] PUJATO S A,DEL L QUIBERONI A,CANDIOTI M C,et al.Leuconostoc citreum MB1 as biocontrol agent of Listeria monocytogenes in milk [J].The Journal of Dairy Research,2014,81(2):137-145.
[77] ANNE T,FLORENCE V,STEPHANIE-MARIE D,et al.Strain-to-strain differences within lactic and propionic acid bacteria species strongly impact the properties of cheese-A review[J].Dairy Science &Technology,2015,95(6):895-918.
[78] TEJERO-SARIÑENA S,BARLOW J,COSTABILE A,et al.In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens:Evidence for the effects of organic acids [J].Anaerobe,2012,18(5):530-538.
[79] SINGH B,MAL G,GAUTAM S K,et al.Nutraceuticals from bioengineered microorganisms [M].Advances in Animal Biotechnology,Switzerland:Springer Nature Switzerland AG,2019:59-69.
[80] YILMAZ N,ÖZOGUL F,MORADI M,et al.Reduction of biogenic amines formation by foodborne pathogens using postbiotics in lysine-decarboxylase broth[J].Journal of Biotechnology,2022,358:118-127.
[81] MIYAMOTO J,IGARASHI M,WATANABE K,et al.Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids[J].Nature Communications,2019,10(1):4007.
[82] TOUSHIK S H,KIM K,PARK S H,et al.Prophylactic efficacy of Lactobacillus curvatus B67-derived postbiotic and quercetin,separately and combined,against Listeria monocytogenes and Salmonella enterica ser.Typhimurium on processed meat sausage[J].Meat Science,2023,197:109065.
[83] ABDOLLAHI S,GHAHREMANI M H,SETAYESH N,et al.Listeria monocytogenes and Salmonella enterica affect the expression of nisin gene and its production by Lactococcus lactis[J].Microbial Pathogenesis,2018,123:28-35.
[84] CHANOS P,MYGIND T.Co-culture-inducible bacteriocin production in lactic acid bacteria[J].Applied Microbiology and Biotechnology,2016,100(10):4297-4308.
[85] ARIANA M,HAMEDI J.Enhanced production of nisin by co-culture of Lactococcus lactis sub sp.lactis and Yarrowia lipolytica in molasses based medium[J].Journal of Biotechnology,2017,256:21-26.
[86] HARTMANN H A,WILKE T,ERDMANN R.Efficacy of bacteriocin-containing cell-free culture supernatants from lactic acid bacteria to control Listeria monocytogenes in food[J].International Journal of Food Microbiology,2011,146(2):192-199.
The Preparation,Analysis and the Activity of Postbiotics from Lactic Acid Bacteria