茶多酚结合热处理对枯草杆菌芽孢细胞结构与能量代谢的影响
作者:
作者单位:

(宁夏大学食品与葡萄酒学院 银川 750021)

基金项目:

国家自然科学基金项目(31760474)


Effect of Tea Polyphenols Combined with Heat Treatment on the Cellular Structure and Energy Metabolism of Bacillus subtilis
Author:
Affiliation:

(School of Food and Wine, Ningxia University, Yinchuan 750021)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    使用不同温度结合0.8 g/L和1.6 g/L茶多酚处理枯草杆菌芽孢,采用平板计数法测定处理对枯草杆菌芽孢的杀灭效果;由核酸泄漏量、电导率与扫描电子显微镜研究芽孢结构的变化;通过测定三磷酸腺苷(ATP)酶、琥珀酸脱氢酶(SDH)及苹果酸脱氢酶(MDH))活力分析对枯草杆菌芽孢能量代谢的影响。结果表明:茶多酚结合热对芽孢有明显的协同杀灭作用,且随浓度和温度的增加,其杀灭效果更好。1.6 g/L茶多酚结合100 ℃处理芽孢后,菌落总数下降2.45 lg(CFU/mL),核酸泄露量及电导率显著增加(P<0.05),OD260nm从0.05升至1.08,电导率从6.61 ms/cm增至71.46 ms/cm,说明该处理可以破坏枯草杆菌芽孢的细胞膜。扫描电子显微镜观察发现,经茶多酚结合热处理的枯草杆菌芽孢菌体形态发生皱缩、凹陷,其ATP、SDH与MDH活力均显著降低(P<0.05),具体表现为:ATP酶活力下降0.16 U/mg,SDH酶活力下降5.3 U/mg,MDH酶活力下降18.7 U/mg,说明该方法能破坏枯草杆菌芽孢的能量代谢,破坏枯草杆菌芽孢的细胞结构,同时抑制呼吸代谢途径中相关酶的活性,影响菌体正常生长,最终导致其死亡。

    Abstract:

    In this paper, Bacillus subtilis spores were treated with 0.8 g/L and 1.6 g/L tea polyphenols at different temperatures, and the inactivating effect of tea polyphenols combined with heat treatments on Bacillus subtilis spores was determined by plate counting method. The effect of tea polyphenol combined with heat on the energy metabolism of Bacillus subtilis was analyzed by measuring the activity of adenosine triphosphate (ATP) enzymes and tricarboxylic acid metabolizing enzymes (succinate dehydrogenase (SDH) and malate dehydrogenase (MDH)). The results showed that tea polyphenols combined with heat had a significant synergistic effect on Bacillus subtilis spores, and the inactivating effect was more pronounced as the concentration and temperature increased. After 1.6 g/L tea polyphenol combined with 100 °C treatment of spores, the total number of colonies decreased by 2.45 lg(CFU/mL), nucleic acid leakage and conductivity increased significantly (P < 0.05), OD260nm increased from 0.05 to 1.08, and conductivity increased from 6.61 ms/cm to 71.46 ms/cm, indicating that the treatment could disrupt the cell membrane of Bacillus subtilis spores. Scanning electron microscopy revealed that the morphology of Bacillus subtilis spores subjected to the tea polyphenol combined with heat treatment was wrinkled and depressed, and their ATP, SDH and MDH activities were significantly reduced (P < 0.05), as shown by a decrease of 0.16 U/mg in ATPase activity, 5.3 U/mg in SDH enzyme activity and 18.7 U/mg in MDH enzyme activity, indicating that the tea polyphenol combined with heat treatment could well disrupt the energy metabolism of Bacillus subtilis spores. In conclusion, tea polyphenol combined with heat treatment can disrupt the cell structure of Bacillus subtilis spores, and at the same time inhibit the activity of related enzymes in the respiratory metabolic pathway, which affects the normal growth of the bacterium and eventually leads to its death.

    参考文献
    [1] COLEMAN W H, ZHANG P, Li Y Q, et al.Mechanism of killing of spores of Bacillus cereus and Bacillus megaterium by wet heat[J].Letters in Applied Microbiology, 2010, 50(5): 507-514.
    [2] RAO L, XU Z Z, WANG Y T, et al.Inactivation of Bacillus subtilis spores by high pressure CO2 with high temperature[J].International Journal of Food Microbiology, 2015, 205:73-80.
    [3] KATJA N, ANTONINA O K, ANNE D J, et al.Identification of differentially expressed genes during Bacillus subtilis spore outgrowth in high-salinity environments using RNA sequencing[J].Frontiers in Microbiology, 2016, 7: 1564.
    [4] TRUNET C, NGO H, COROLLER L.Quantifying permeabilization and activity recovery of Bacillus spores in adverse conditions for growth[J].Food Microbiology, 2018, 81: 115-120.
    [5] HASAN M, NIHAL A.Tea polyphenols: prevention of cancer and optimizing health[J].The American Journal of Clinical Nutrition, 2000, 71(6): 1698S-1702S.
    [6] KONARIKOVA K, JEZOVICOVA M, KERESTES J, et al.Anticancer effect of black tea extract in human cancer cell lines[J].Springerplus, 2015, 4:127.
    [7] JIANG X D, FENG K J, YANG X P.In vitro antifungal activity and mechanism of action of tea polyphenols and tea saponin against Rhizopus stolonifer[J].Journal of Molecular Microbiology and Biotechnology, 2015, 25(4): 269-276.
    [8] SAKANAKA S, JUNEJA L R, TANIGUCHI M.Antimicrobial effects of green tea polyphenols on thermophilic spore-forming bacteria[J].Journal of Bioscience & Bioengineering, 2000, 90(1): 81-85.
    [9] 汪金莲, 邱业先, 陈宏伟, 等.茶多酚对几种植物病原真菌的抑制作用及机理研究[J].天然产物研究与开发, 2008, 20(4): 5.WANG J L, QIU Y X, CHEN H W, et al.Inhibitive action of tea-polyphenol on some plant pathogenic Fungi[J].Natural Products Research and Development.2008, 20(4): 5.
    [10] YANG Y, ZHANG T.Antimicrobial activities of tea polyphenol on phytopathogens: A review[J].Molecules, 2019, 24(4): 816.
    [11] MENG J, GONG Y, QIAN P, et al.Combined effects of ultra-high hydrostatic pressure and mild heat on the inactivation of Bacillus subtilis[J].LWT-Food Science & Technology, 2016, 68: 59-66.
    [12] YANG S Z, LIU L M, LI D M, et al.Use of active extracts of poplar buds against Penicillium italicum and possible modes of action[J].Food Chemistry, 2016, 196: 610-618.
    [13] PEI Q, LI Y, GE X Z, et al.Multipath effects of berberine on peach brown rot fungus Monilinia fructicola[J].Crop Protection, 2019, 116: 92-100.
    [14] TAN Z L, SHI Y F, XING B, et al.The antimicrobial effects and mechanism of epsilon -poly-lysine against Staphylococcus aureus[J].Bioresources and Bioprocessing, 2019, 6(1): 1-10.
    [15] 刘剑侠.茶多酚处理对冷藏大菱鲆的品质变化影响及其抑菌机理研究[D].锦州: 渤海大学, 2014.LIU J X.Study on the effect of tea polyphenol treatment on the quality change of frozen turbot and its bacterial inhibition mechanism[D].Jingzhou: Bohai University, 2014.
    [16] 任小青.鲶鱼骨酶解物的制备, 抑菌性能, 抑菌机理及其在食品中的应用研究[D].上海: 华东理工大学, 2012.REN X Q.Preparation of catfish bone enzymatic digest, bacteriostatic properties, bacteriostatic mechanism and its application in food[D].Shanghai: East China University of Science and Technology, 2012.
    [17] 赵海鹏.生物保鲜剂在南美白对虾保鲜中的应用及菌相研究[D].上海: 上海海洋大学, 2010.ZHAO H P.Application of biological preservatives in the preservation of South American white shrimp and study of the bacteriological phase[D].上海: Shanghai Ocean University, 2010.
    [18] COX S D, MANN C M, MARKHAM J L.Interactions between components of the essential oil of Melaleuca alternifolia[J].Journal of Applied Microbiology, 2001, 91(3): 492-497.
    [19] YI S M, WANG W, BAI F L, et al.Antimicrobial effect and membrane-active mechanism of tea polyphenols against Serratia marcescens[J].World Journal of Microbiology & Biotechnology, 2014, 30(2): 451-460.
    [20] PENG L T, YANG S Z, CHENG Y J, et al.Antifungal activity and action mode of pinocembrin from propolis against Penicillium italicum[J].Food science and biotechnology, 2012, 21(6): 1533-1539.
    [21] 钱丽红, 陶妍, 谢晶.茶多酚对金黄色葡萄球菌和铜绿假单胞菌的抑菌机理[J].微生物学通报, 2010, 37(11): 1628-1633.QIAN L H, TAO Y, XIE J.Antibacterial mechanism of tea polyphenols against Staphylococcus aureus and Pseudomonas aeruginosa[J].Microbiology Bulletin, 2010, 37(11): 1628-1633.
    [22] MOLVA, C, BAYSAL A H.Effect of sporulation medium on wet-heat resistance and structure of Alicyclobacillus acidoterrestris DSM 3922-type strain spores and modeling of the inactivation kinetics in apple juice[J].International Journal of Food Microbiology, 2014, 189: 82-88.
    [23] YI S M, ZHU J L, FU L L, et al.Tea polyphenols inhibit Pseudomonas aeruginosa through damage to the cell membrane[J].International Journal of Food Microbiology, 2010, 144(1): 111-117.
    [24] SI W D, GONG J, TSAO R, et al.Bioassay-guided purification and identification of antimicrobial components in Chinese green tea extract[J].Journal of Chromatography A, 2006, 1125(2): 204-210.
    [25] NAZZARO F, FRATIANNI F, LAURA D M, et al.Effect of essential oils on pathogenic bacteria[J].Pharmaceuticals, 2013, 6(12): 1451-1474.
    [26] ZHENG F L, ZHANG W W, SUI Y, et al.Sugar protectants improve the thermotolerance and biocontrol efficacy of the biocontrol Yeast, Candida oleophila[J].Frontiers in Microbiology, 2019, 10:187.
    [27] SUI Y, LIU J.Effect of glucose on thermotolerance and biocontrol efficacy of the antagonistic yeast Pichia guilliermondii[J].Biological Control, 2014, 74: 59-64.
    [28] 仪淑敏, 王嵬, 励建荣, 等.茶多酚对假单胞菌抑菌机理研究[J].渤海大学学报(自然科学版) 2011, 32(4): 376-382.YI S M, WANG W, LI J R, et al.Study on the mechanism of inhibition of Pseudomonas aeruginosa by tea polyphenols[J].Journal of Bohai University (Natural Science Edition) 2011, 32(4): 376-382.
    [29] DAGLIA M.Polyphenols as antimicrobial agents [J].Current Opinion in Biotechnology, 2012, 23(2): 174-181.
    [30] SIEROTZKI H, SCALLIET G.A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides[J].Phytopathology, 2013, 103(9): 880-887.
    [31] YAO Y X, LI M, ZHAI H, et al.Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis[J].Journal of Plant Physiology, 2011, 168(5): 474-480.
    [32] JOURNET E P, NEUBURGER M, DOUCE R.Role of glutamate-oxaloacetate transaminase and malate dehydrogenase in the regeneration of NAD for glycine oxidation by spinach leaf mitochondria[J].Plant Physiology, 1981, 67(3): 467-469.
    [33] JOSHI S S, HOWELL A B, D'SOUZA D H.Cronobacter sakazakii reduction by blueberry proanthocyanidins[J].Food Microbiology, 2014, 39: 127-131.
    [34] PECSI I, HARDS K, EKANAYAKA N, et al.Essentiality of succinate dehydrogenase in mycobacterium smegmatis and its role in the generation of the membrane potential under hypoxia[J].Mbio, 2015, 5(4): e01093-01014.
    [35] PEI Q, LI Y, GE X Z, et al.Multipath effects of berberine on peach brown rot fungus Monilinia fructicola[J].Crop Protection, 2019, 116: 92-100.
    [36] LIU J, WISNIEWSKI M, DROBY S, et al.Effect of heat shock treatment on stress tolerance and biocontrol efficacy of Metschnikowia fructicola[J].FEMS Microbiology Ecology, 2011, 905: 227-232.
    [37] EVENSEN N A, BRAUN P C.The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation[J].Canadian Journal of Microbiology, 2009, 55(9): 1033-1039.
    相似文献
    引证文献
引用本文

毕可,刘月,杨杰,张变飞,辛伟山,章中.茶多酚结合热处理对枯草杆菌芽孢细胞结构与能量代谢的影响[J].中国食品学报,2023,23(3):138-146

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-08
  • 在线发布日期: 2023-04-06
文章二维码
版权所有 :《中国食品学报》杂志社     京ICP备09084417号-4
地址 :北京市海淀区阜成路北三街8号9层      邮政编码 :100048
电话 :010-65223596 65265375      电子邮箱 :chinaspxb@vip.163.com
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!

漂浮通知


×
《中国食品学报》杂志社招聘编辑