基于多类别的镉稻米近红外光谱识别分析
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

长株潭国家自主创新示范区专项(2018XK2006);湖南省知识产权战略化项目(2018Z066M);湖南省科技重大专项(2011FJ1002);农业部科研杰出人才及农产品加工与质量安全创新团队


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用近红外(NIR)光谱结合化学计量学方法对不同镉污染程度的稻米进行鉴别。首先利用主成分分析(PCA)对样本的NIR光谱进行解析,再用有监督学习算法偏最小二乘识别分析(PLS-DA)、径向基人工神经网络(RBF-ANN)及支持向量机(SVM)对不同污染程度的镉稻米进行定性建模分析。本文还讨论了不同的光谱预处理方法以及建模方法对识别效果的影响。由于NIR光谱差异太小,所以PCA得分图重叠严重,类之间很难区分,PLS-DA、RBF-ANN与SVM模型的预测集鉴别准确率分别为77.1%,67.8%与67.2%,PLS-DA的识别率最高。近红外光谱技术与化学计量学方法虽难以获得预测准确率较高的识别模型,但其预测结果还是可用于超标镉稻米的初步筛查。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

朱向荣;李高阳;江 靖;谢运河;单 杨.基于多类别的镉稻米近红外光谱识别分析[J].中国食品学报,2019,19(5):263-269

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-05-31
  • 出版日期:
版权所有 :《中国食品学报》杂志社     京ICP备09084417号-4
地址 :北京市海淀区阜成路北三街8号9层      邮政编码 :100048
电话 :010-65223596 65265375      电子邮箱 :chinaspxb@vip.163.com
技术支持:北京勤云科技发展有限公司

漂浮通知