基于介电频谱灵武长枣维生素C含量预测方法的研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(31160346);国家大学生创新创业训练计划项目(201610749020)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为探究基于介电频谱预测灵武长枣维生素C含量的可行性,寻找最佳预测模型,利用LCR测试仪测试1 kHz~1 MHz条件下采后10 d内长枣介电谱变化规律;以CARS法、GA法、SPA法、UVE法筛选特征频率点并建立PLS、LSSVM长枣VC含量预测模型。结果表明,UVE算法为最佳频谱筛选方法,筛选特征频率点38个;UVE-PLS为最佳预测模型,其Rc、RMSEC、Rp、RMSEP值分别为0.9871、3.9322、0.9460、4.0400,验证模型预测值与实测值无显著差异(P>0.05),说明基于介电频谱预测灵武长枣VC含量的方法是可行的。

    Abstract:

    In order to explore the feasibility of predicting vitamin C content of Lingwu long jujube based on dielectric spectrum and find the best predictive model. Dielectric spectrum of Changzao were tested and analysed under of 1kHz~1MHz using the LCR tester. The characteristic frequency points were screened out by Competitive Adaptive Reweighed Sampling, Genetic Algorithm, Successive Projection Aalgorithm, and Uninformative Variable Elimination and the predictive model of Vitamin C content Least square support vector machine and Partial Least Squares were established combining the characteristic frequencies and VC value. The results show that the UVE algorithm is the best method to screen spectrum and 38 characteristic frequency points were screened. UVE-PLS is the best predictive model, the Rc, RMSEC, Rp, RMSEP values were 0.9871, 3.9322, 0.9460, 4.0400 and no significant difference (P>0.05) between measured and predicted values of validation model. It is feasible to predict the content of VC in long jujube based on dielectric spectrum.

    参考文献
    相似文献
    引证文献
引用本文

李冬冬;贾柳君;邓 鸿;单启梅;何嘉琳;张海红.基于介电频谱灵武长枣维生素C含量预测方法的研究[J].中国食品学报,2019,19(8):271-278

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-09-03
  • 出版日期:
文章二维码
版权所有 :《中国食品学报》杂志社     京ICP备09084417号-4
地址 :北京市海淀区阜成路北三街8号9层      邮政编码 :100048
电话 :010-65223596 65265375      电子邮箱 :chinaspxb@vip.163.com
技术支持:北京勤云科技发展有限公司

漂浮通知


×
《中国食品学报》杂志社招聘编辑