鱼源腐败希瓦氏菌生长/非生长界面模型的建立和验证
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(31871872);中央级公益性科研院所基本科研业务费专项资金(2018M04);中央级公益性科研院所-中国水产科学研究院基本科研业务费资助项目(2020TD68)


Establishment and Validation of Growth / Non-Growth Interface Model of Shewanella putrefaciens Isolated from Fish
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    选取鱼源腐败希瓦氏菌为研究对象,研究室温(25℃)条件下pH、aw及盐分(NaCl)对腐败希瓦氏菌生长概率的交互影响。采用二阶线性Logistic回归方程和PNN人工神经网络算法构建环境因子交互作用下腐败希瓦氏菌生长/非生长界面模型,对两种模型的拟合优度和预测力进行比较和验证。结果表明,二阶线性Logistic腐败希瓦氏菌生长/非生长模型的测试集和验证集一致率分别为93.80%和100.00%,能预测腐败希瓦氏菌生长/非生长概率;PNN人工神经网络模型的测试集和验证集一致率分别为100.00%和86.67%,最优时间为0.1s,能对腐败希瓦氏菌生长/非生长数据进行快速分类。随着盐分增长,腐败希瓦氏菌生长/非生长界限小幅度向高aw、高pH方向移动,高盐分对腐败希瓦氏菌有生长抑制作用。aw≤0.91时,菌株均不生长,aw=0.92,0.94和0.96时,腐败希瓦氏菌生长概率随pH增大而增大,上升陡峭。pH=4.5时,腐败希瓦氏菌基本不生长,随pH升高,高aw情况下的生长概率增至100%。通过构建鱼源腐败希瓦氏菌环境因子下生长/非生长界面模型,PNN人工神经网络模型可对其生长/非生长数据进行快速分类,二阶线性Logistic能为定量评估pH,aw和盐分范围水产品品质保障提供理论支持。

    Abstract:

    Select Shewanella putrefaciens isolated from the fish as the research object, explored the effect of environmental factors including pH, aw and NaCl on its growth probability at room temperature (25 ℃). The second order linear logistic regression equation and the PNN artificial neural network algorithm were used to establish the growth / non - growth interface model of Shewanella putrefaciens, the goodness of fit and the predictive power of the two models were compared and validated. The results showed that the coincidence rates were 93.80% and 100.00% of the trainingset and test set of the second order linear logistic regression equation which could predict the growth probability in detail; while the consistent rate of trainingset and test set of PNN artificial neural network is 100.00% and 86.67% and the optimal speed is 0.1 second, which can classify the growth / non-growth data. With the increasing of salt, the growth of Shewanella putrefaciens was inhibited, the growth interface moved to high water activity, high pH direction; The spoilage organism couldn’t grow under the condition of water activity of 0.91, aw=0.92, 0.94 and 0.96, growth probability of Shewanella putrefaciens increased with the increase of pH, rise steeply; while pH=4.5, Shewanella putrefaciens did not growth, with the increase of pH, the growth probability of high aw cases first reached 1. By developing the Shewanella putrefaciens growth / no growth interface model under different environment parameters, PNN artificial neural network model could make a good andrapid classification predictionon the growth / no growth data; The second order linear logistic model was better for the quantitative assessment of pH, aw and salt domains to protect the quality and the stability of products.

    参考文献
    相似文献
    引证文献
引用本文

郭全友;朱彦祺;姜朝军;李保国;.鱼源腐败希瓦氏菌生长/非生长界面模型的建立和验证[J].中国食品学报,2020,20(3):172-180

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-04-14
  • 出版日期:
文章二维码
版权所有 :《中国食品学报》杂志社     京ICP备09084417号-4
地址 :北京市海淀区阜成路北三街8号9层      邮政编码 :100048
电话 :010-65223596 65265375      电子邮箱 :chinaspxb@vip.163.com
技术支持:北京勤云科技发展有限公司

漂浮通知


×
《中国食品学报》杂志社招聘编辑