基于激光诱导击穿光谱技术结合机器学习算法的3种干腌火腿产地识别
CSTR:
作者:
作者单位:

(1.浙江省光信息检测与显示技术研究重点实验室 浙江金华 321001;2.浙江师范大学数学与计算机科学学院 浙江金华 321001)

作者简介:

郭茂(1997—),男,硕士生

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(61975186)


Origin Identification of Three Kinds of Dry-cured Ham Based on Laser-induced Breakdown Spectroscopy Technology Combined with Machine Learning Algorithm
Author:
Affiliation:

(1.Key Laboratory of Optical Information Detecting and Display Technology of Zhejiang Province, Jinhua 321001, Zhejiang;2.College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321001, Zhejiang)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    火腿种类多,产地不同。本文采用激光诱导击穿光谱技术(LIBS)结合机器学习算法鉴别火腿原产地。采集16个火腿切片样品(4个如皋火腿样品、5个金华火腿样品、7个宣威火腿样品)的LIBS光谱数据,应用K近邻(KNN)、支持向量机(SVM)以及全连接神经网络(DNN)对火腿样品产地进行分类。采用主成分分析(PCA)对火腿样品的光谱数据降维处理,然后,分别结合KNN和SVM算法对样品进行分类,并研究对建模速度和预测准确率的影响。结果表明:KNN和SVM在结合PCA后,建模分析时间大幅减少;KNN、PCA+KNN、SVM、PCA+SVM 4种分类方法的平均正确率分别为70.53%,73.50%,79.53%,80.42%,使用PCA结合KNN和SVM时分类准确率有小幅度的提高;使用DNN对火腿样品进行分类,正确率最高达85.56%,相比于KNN和SVM,DNN对火腿LIBS光谱数据具有更高的分类正确率。结论:用LIBS结合机器学习算法区分不同产地的火腿样品是可行的.

    Abstract:

    There are many types of hams and their origins are different. This article uses laser-induced breakdown spectroscopy (LIBS) combined with machine learning algorithms to carry out research on the identification of ham origins. The LIBS spectrum data of 16 ham slice samples(4 Rugao ham samples, 5 Jinhua ham samples, 7 Xuanwei ham samples) were collected in the experiment, using K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Deep Neural Network (DNN) classifies the origin of ham samples, and studies the dimensionality reduction processing of the spectrum data of the ham samples using Principal Component Analysis (PCA), and then combines the KNN and SVM algorithms to classify the samples and the speed of modeling And the impact of forecast accuracy. The research results show that: KNN and SVM combined with PCA, the modeling and analysis time is greatly reduced; the average accuracy of the four classification methods of KNN, PCA+KNN, SVM, and PCA+SVM are 70.53%, 73.50%, 79.53%, and 80.42%, when using KNN and SVM combined with PCA, the classification accuracy is improved slightly; Using DNN to classify the ham samples, the classification accuracy rate can reach 85.56%, compared with KNN and SVM, DNN has a higher classification accuracy rate for ham LIBS spectrum data. The above show that LIBS combined with machine learning algorithm is feasible to distinguish ham samples from different origins.

    参考文献
    相似文献
    引证文献
引用本文

郭茂,黄忠宇,汪杰,周卫东.基于激光诱导击穿光谱技术结合机器学习算法的3种干腌火腿产地识别[J].中国食品学报,2022,22(10):279-285

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-11-24
  • 出版日期:
文章二维码
版权所有 :《中国食品学报》杂志社     京ICP备09084417号-4
地址 :北京市海淀区阜成路北三街8号9层      邮政编码 :100048
电话 :010-65223596 65265375      电子邮箱 :chinaspxb@vip.163.com
技术支持:北京勤云科技发展有限公司

漂浮通知


×
《中国食品学报》杂志社招聘编辑