活性引导结合高速逆流色谱分离蓝莓活性成分及其与α-葡萄糖苷酶的相互作用
作者:
作者单位:

(1.山西药科职业学院食品工程系 太原 030031;2.运城学院生命科学系 山西运城 044000;3.北京大学前沿交叉研究院 北京 100091)

作者简介:

通讯作者:

中图分类号:

基金项目:

山西省高等学校科技创新项目(2019L1012)


Activity Guided-Assisted High-Speed Counter-Current Chromatography Separation of Active Compound from Blueberry and the Interaction between the Active Compound and α-Glucosidase
Author:
Affiliation:

(1.Department of Food Engineering, Shanxi Pharmaceutical Vocational College, Taiyuan 030031;2.Department of Life Sciences, Yuncheng College, Yuncheng 044000, Shanxi;3.Peking University Frontier Cross Research Institute, Beijing 100091)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于活性引导结合高速逆流色谱(HSCCC)技术,分离蓝莓中具有抑制α-葡萄糖苷酶活性的组分。首先,经不同溶剂提取后,活性成分在水中得到富集;其次,通过HSCCC分离水提物,得到6种组分,其中F4对α-葡萄糖苷酶的抑制率显著高于其它几种;再次将F4采用Sephadex LH-20葡聚糖凝胶纯化,得到高纯的组分Ⅰ;最后通过紫外光谱、傅里叶红外光谱、高效液相色谱-质谱联用及核磁技术鉴定组分Ⅰ为矢车菊-3-O-葡萄糖苷(C3G),纯度为95.06%。此外,采用多光谱扫描和分子对接技术对C3G与α-葡萄糖苷酶的相互作用进行表征。研究发现C3G与α-葡萄糖苷酶通过氢键自发结合形成复合物。与C3G复合后,α-葡萄糖苷酶的二级结构发生不同程度的变化,其中α-螺旋和β-转角降低,β-折叠和不规则卷曲增加。分子对接模拟发现C3G与残基Leu 313、Ser 157、Tyr 158、Phe 314、Arg 315和Asp 307以氢键结合,并与周围4个疏水残基存在疏水作用,共同维持复合物结构。本研究结果对开发2型糖尿病功能性食品具有重要意义。

    Abstract:

    Activity guided-assisted high-speed counter-current chromatography (HSCCC) was used to separate α-glucosidase inhibitory components from blueberry in this study. Firstly, the active components were enriched in water after being extracted by different solvents. Secondly. the water extract was separated by HSCCC and six components were obtained. The inhibition rate of F4 on α-glucosidase was significantly higher than other components. Then F4 was purified by Sephadex LH-20 dextran gel to obtain high purity component I. Finally, component I was identified as cyanidin-3-O-glucoside (C3G) by UV, FTIR, HPLC-MS and NMR, and its purity was 95.06%. In addition, the interaction between C3G and α-glucosidase was characterized by multispectral scanning and molecular docking. It was found that C3G could spontaneously combine with α-glucosidase through hydrogen bond to form complex. After compounding with C3G, the secondary structure of α-glucosidase changed in varying degrees, in which the α-helix and β-angle decreased, while the β-folding and irregular helix increased. Molecular docking simulation showed that C3G was hydrogen bonded with Leu 313, Ser 157, Tyr 158, Phe 314, Arg 315 and Asp 307, and had hydrophobic interaction with four hydrophobic residues, which maintained the complex structure. The results of this study have important guiding significance for the development of functional foods for treating type 2 diabetes.

    参考文献
    相似文献
    引证文献
引用本文

杨兆艳,田艳花,王玲丽,谭佳琪.活性引导结合高速逆流色谱分离蓝莓活性成分及其与α-葡萄糖苷酶的相互作用[J].中国食品学报,2023,23(1):41-53

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-29
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-24
  • 出版日期:
版权所有 :《中国食品学报》杂志社     京ICP备09084417号-4
地址 :北京市海淀区阜成路北三街8号9层      邮政编码 :100048
电话 :010-65223596 65265375      电子邮箱 :chinaspxb@vip.163.com
技术支持:北京勤云科技发展有限公司

漂浮通知