基于GC-IMS的白酒特征分析及鉴别
作者:
作者单位:

(1.北京工商大学化学与材料工程学院 北京 100048;2.江苏今世缘酒业股份有限公司 江苏淮安 223411;3.山东海能科学仪器有限公司 山东德州 253000;4.北京工商大学轻工科学技术学院 北京 100048)

作者简介:

通讯作者:

中图分类号:

基金项目:

“十三五”国家重点研发计划项目重点专项(2018YFC1604101)


Feature Analysis and Identification of Baijiu Based on Gas Chromatography-Ion Migration Spectrometry
Author:
Affiliation:

(1.College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048;2.Jiangsu King's Luck Brewery Joint-Stock Co., Ltd., Huaian 223411, Jiangsu;3.Shandong Hanon Instrument Co., Ltd., Dezhou 253000, Shandong;4.School of Light Industry, Beijing Technology and Business University, Beijing 100048)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    探讨一种在未对挥发组分定性、定量的条件下,实现白酒准确鉴别的简便方法。选用两种香型共10种白酒,每种白酒取2个勾调批次的样品。直接原样顶空制样,通过气相色谱-离子迁移谱法(GC-IMS)分析,获得可视化的指纹图谱,并进一步提取白酒主要特征建立Fisher线性判别模型。从白酒样品中共检出134种挥发组分。指纹图谱可直观反映白酒样品中微量挥发组分的含量差异和勾调的批次稳定性。在未完全剖析和定量所有组分前提下,采用逐步回归分析分别对基于全部134种挥发组分、相关性分析选择的39种特征组分以及主成分分析提取的6个主成分建立的3个Fisher线性判别模型进行优化。优化后的相关性分析模型(优化为21种组分特征)和主成分分析模型对训练集的分类正确率和留一法交叉验证分类正确率均为100%,对测试集样品的判别正确率均为95%。由全部特征经逐步回归分析优化的模型,共提取24个组分特征,建立的Fisher线性判别模型效果最优。其对训练集分类正确率为100%,留一法交叉验证分类正确率为100%,对测试集酒样预测正确率达100%。GC-IMS方法可为白酒生产过程中的质量控制、市场监管及白酒原产地保护提供技术支持,结合模式识别方法可对白酒进行准确鉴别。

    Abstract:

    A simple method for accurate identification of Baijiu was developed without qualitative and quantitative determination of volatile components. A total of 10 kinds of Baijiu with two flavor types were selected, and each of them has 2 samples from different blending batches. After directly headspace sample preparation, gas chromatography-ion mobility spectrometry (GC-IMS) was used to obtain the visualized fingerprints, and further extract the main features of Baijiu to establish Fisher linear discriminant models. A total of 134 volatile components were detected in the samples. The fingerprints can directly reflect the content difference of trace volatile components and the batch stability of blending. Under the premise of not fully analyzing and quantifying all components, stepwise regression analysis is used to optimize the three Fisher linear discriminant models which are respectively based on all 134 volatile components, 39 characteristic components selected by correlation analysis, and the 6 principal components obtained from principal component analysis. For the optimized correlation analysis model (the component features are reduced to 21) and the principal component analysis model, the classification accuracy rates and leave-one-out cross validation classification accuracy rates for the training set are 100%, and the discrimination accuracy rates for the test set are both 95%. The optimized Fisher linear discriminant model based on all the features has the best result, and 24 component features are extracted. The model's classification accuracy rate of the training set is 100%, the leave-one-out method cross-validation classification accuracy rate is 100%, and the prediction accuracy rate of the Baijiu samples in the test set reaches 100%. The GC-IMS is significant for the quality control, market supervision and the origin protection of Baijiu, and it can accurately identify Baijiu combining with pattern recognition.

    参考文献
    相似文献
    引证文献
引用本文

鲁祥凯,杨彪,孙莹,贺金娜,樊保民,孙辉,孙啸涛.基于GC-IMS的白酒特征分析及鉴别[J].中国食品学报,2023,23(1):278-295

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-17
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-24
  • 出版日期:
文章二维码
版权所有 :《中国食品学报》杂志社     京ICP备09084417号-4
地址 :北京市海淀区阜成路北三街8号9层      邮政编码 :100048
电话 :010-65223596 65265375      电子邮箱 :chinaspxb@vip.163.com
技术支持:北京勤云科技发展有限公司

漂浮通知


×
《中国食品学报》杂志社招聘编辑