小龙虾中砷含量近红外光谱预测模型的建立
作者:
作者单位:

(1.武汉轻工大学食品科学与工程学院 武汉 430023;2.武汉轻工大学 农产品加工与转化湖北省重点实验室 武汉 430023;3.湖北莱克现代农业科技发展有限公司 湖北潜江 433100;4.国家小龙虾加工技术研发分中心(潜江) 湖北潜江 433100)

作者简介:

通讯作者:

中图分类号:

基金项目:

“十三五”国家重点研发计划重点专项课题(2019YFC1606001)


Establishment of Prediction Model of Arsenic Content in Crayfish Using Near Infrared Spectroscopy
Author:
Affiliation:

(1.College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023;2.Wuhan Polytechnic University, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023;3.Hubei Laker Modern Agricultural Science & Technology Development Co. Ltd., Qianjiang 433100, Hubei;4.National R & D Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, Hubei)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为快速检测小龙虾中重金属砷的含量,将砷选择性吸附树脂(SQ-407)置于100 mL砷标准溶液(100 μg/L)中,调节溶液pH 6.0~8.0,在35~45 ℃下吸附60~120 min,优化SQ-407树脂的吸附条件。鲜活小龙虾经冷冻干燥后微波消解,消解液用SQ-407树脂吸附。采集吸附砷的树脂的近红外光谱,采用不同预处理方法(一阶导数1st、标准正态变量变换SNV、多元散射校正MSC和小波变换WT)进行优化,用偏最小二乘法(PLS)建立砷浓度与近红外光谱之间的线性预测模型,比较预测砷浓度与真实砷浓度,得出预测模型的准确性。结果显示,在pH 7.0、40 ℃下吸附90 min,砷的吸附率高(99.30%)。经1st方法对光谱预处理后,建立的PLS预测模型的准确度高,其训练集均方根误差(RMSECV)为0.033,相关系数(R)为0.995;验证集均方根误差(RMSEP)为0.032,相关系数(R)为0.995。结论:树脂吸附结合近红外光谱建立的预测模型能快速检测小龙虾中砷的含量。

    Abstract:

    A method for detecting the arsenic in crayfish rapidly was proposed in this study. The selective adsorbing resin (SQ-407) was placed in 100 mL arsenic standard solution (100 μg/L), and the adsorption conditions were optimized. Furthermore, fresh crayfish was freeze-dried and digested by microwave, then the digestion solution is adsorbed by SQ-407 under optimized adsorption conditions. The near-infrared spectra of SQ-407 absorbed resin was collected and optimized by using different spectral pretreatment methods (first derivative spectrophotometry, 1st; standard normal variable transformation, SNV; multiplicative scatter correction, MSC; wavelet transform, WT). Partial least squares (PLS) method was used to establish a quantitate model. The arsenic predicted by the established model was compared with the standard method to evaluate the prediction accuracy of the model. Compared to other conditions, the adsorption rate of arsenic was higher(99.30%) at pH 7.0 and 40 ℃ for 90 min. Model constructed by the spectra preprocessed by 1st have shown higher accuracy: the root mean square error (RMSECV) of the training set and the correlation coefficient (R) was 0.033 and 0.995, respectively; the root mean square error (RMSEP) of the prediction set and the correlation coefficient(R) was 0.032 and 0.995, respectively. The results indicated that combining near-infrared spectroscopy with resin adsorption may provide accurate and rapid method for arsenic assessment in crayfish.

    参考文献
    相似文献
    引证文献
引用本文

徐言,陈季旺,占可,刘言,廖鄂,邹圣碧.小龙虾中砷含量近红外光谱预测模型的建立[J].中国食品学报,2023,23(5):362-370

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-25
  • 出版日期:
文章二维码
版权所有 :《中国食品学报》杂志社     京ICP备09084417号-4
地址 :北京市海淀区阜成路北三街8号9层      邮政编码 :100048
电话 :010-65223596 65265375      电子邮箱 :chinaspxb@vip.163.com
技术支持:北京勤云科技发展有限公司

漂浮通知


×
《中国食品学报》杂志社招聘编辑