基于卷积神经网络的熟化鱼肉纤维程度评价方法研究
作者:
作者单位:

(1.江南大学食品科学与资源挖掘全国重点实验室 江苏无锡 214122;2.农业农村部水产加工冷藏与调理重点实验室 福建厦门 361022;3.江南大学食品学院 江苏无锡 214122;4.福建省冷冻调理水产品加工重点实验室 福建厦门 361022;5.安井食品集团股份有限公司 福建厦门 361022)

作者简介:

通讯作者:

中图分类号:

基金项目:

“十三五”国家重点研发计划“蓝色粮仓”重点专项(2019YFD0902000):江苏省农业科技自主创新基金项目(CX(21)2040)


Evaluation of Fiber Degree for Cooked Fish Muscle Based on the Convolutional Neural Network
Author:
Affiliation:

(1.State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu;2.Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, Fujian;3.School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu;4.Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, Fujian;5.Anjoy Foods Group Co., Ltd., Xiamen 361022, Fujian

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了打破熟化鱼肉纤维口感无系统性评价方法的局面,基于卷积神经网络构建熟化鱼肉纤维程度的评价方法。通过对不同纤维程度的熟化鱼肉样品进行微观图片采集,建立数据集。数据集按8 ∶ 2的比例随机分为训练集和测试集。构建的模型在训练集上训练,然后用测试集评估其识别性能。结果表明,在网络深度的选择时,34层的ResNet模型在收敛速度和准确率上均胜出;4种不同深度的ResNet模型在最佳识别准确率上都优于AlexNet、VGG-16和GoogLeNet模型;ResNet-34的准确性、精度、灵敏度、特异性和AUC的平均值分别为96.94%,91.26%,91.00%,98.13%和99.19%,表明基于ResNet-34模型搭建的评价方法能够客观、准确地识别熟化鱼肉纤维程度。

    Abstract:

    An evaluation method for cooked fish fiber degree was constructed based on the convolutional neural network in order to break the situation that there was no systematic evaluation method for cooked fish fiber taste. A dataset was established by collecting microscopic images of cooked fish samples with different fiber degrees. The dataset was randomly divided into training dataset and testing dataset in the ratio of 8∶2. The constructed models were trained on the training dataset and their recognition performance were evaluated by the testing dataset. The result showed that the 34-layer ResNet model win in convergence speed and accuracy when choosing network depth. Four ResNet models with different depths were better than AlexNet, VGG-16 and GoogLeNet models in the best recognition accuracy. The average accuracy, precision, sensitivity and specificity and AUC of ResNet-34 were 96.94%, 91.26%, 91.00%, 98.13% and 99.19%, respectively, which proved that the evaluation method based on ResNet-34 model could objectively and accurately identify the degree of cooked fish fiber.

    参考文献
    相似文献
    引证文献
引用本文

俞军华,朱金林,闫博文,焦熙栋,黄建联,范大明.基于卷积神经网络的熟化鱼肉纤维程度评价方法研究[J].中国食品学报,2023,23(9):252-260

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-02
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-22
  • 出版日期:
文章二维码
版权所有 :《中国食品学报》杂志社     京ICP备09084417号-4
地址 :北京市海淀区阜成路北三街8号9层      邮政编码 :100048
电话 :010-65223596 65265375      电子邮箱 :chinaspxb@vip.163.com
技术支持:北京勤云科技发展有限公司

漂浮通知


×
《中国食品学报》杂志社招聘编辑