基于多光谱成像技术的玉米赭曲霉菌无损检测
作者:
作者单位:

(1.合肥工业大学食品与生物工程学院 合肥 230009;2.合肥学院机器视觉与智能控制实验室 合肥 230601)

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金联合基金项目(U23A2081);安徽省重点研究与开发计划项目(2023n06020052)


Non-destructive Detection of Aspergillus ochraceus in Corn Based on Multispectral Imaging Technology
Author:
Affiliation:

(1.School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009;2.Intelligent Control and Compute Vision Lab, Hefei University, Hefei 230601)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    玉米极易感染赭曲霉菌,对人体健康构成严重危害。传统的赭曲霉菌检测方法费时费力且具有破坏性,因此需开发一种快速、无损检测方法来监测玉米中的赭曲霉菌。采用多光谱成像技术结合化学计量学方法,获得赭曲霉菌定量检测和赭曲霉菌感染程度定性判定的最佳模型。结果表明,与偏最小二乘(PLS)和最小二乘支持向量机(LS-SVM)相比,反向传播神经网络(BPNN)的预测性能最好,预测集相关系数(Rp)为0.9494,建模集均方根误差(RMSEC)和预测集均方根误差(RMSEP)最低,分别为2.6693和2.2743 CFU/g。此外,在感染程度的鉴别试验中,BPNN预测效果也最好,其建模集鉴别准确率(Ac)和预测集鉴别准确率(Ap)均达到100%。结论:多光谱成像技术与化学计量学方法相结合,为玉米中赭曲霉菌的监测提供了一个有效的方法。

    Abstract:

    Corn is easily infected by Aspergillus ochraceus, which is severely hazardous to human health. As the traditional methods for Aspergillus ochraceus detection are time-consuming and destructive, it is necessary to develop a rapid and non-destructive method for monitoring the growth of Aspergillus ochraceus in corn during storage. In this study, multispectral imaging technology combined with chemometric methods was used to obtain the optimal model for predicting the count of Aspergillus ochraceus quantitively and classifying the infection degree qualitatively. The results showed that compared with partial least square (PLS) and least square-support vector machine (LS-SVM), back propagation neural network (BPNN) showed the best prediction performance with correlation coefficient of prediction (Rp) value of 0.9494, and the lowest root-mean-square error of calibration (RMSEC) and root-mean-square error of prediction (RMSEP) values of 2.6693 and 2.2743 CFU/g, respectively. In addition, for the classification experiment of the infective degree, BPNN was also the best prediction model with the accuracy of calibration(Ac) and the accuracy of prediction(Ap) both reached 100%. The results indicated that multispectral imaging combined with chemometric methods provided a promising technique to evaluate the infection of Aspergillus ochraceus in corn.

    参考文献
    相似文献
    引证文献
引用本文

任林,刘伟,刘长虹,郑磊.基于多光谱成像技术的玉米赭曲霉菌无损检测[J].中国食品学报,2024,24(6):402-409

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-22
  • 出版日期:
文章二维码
版权所有 :《中国食品学报》杂志社     京ICP备09084417号-4
地址 :北京市海淀区阜成路北三街8号9层      邮政编码 :100048
电话 :010-65223596 65265375      电子邮箱 :chinaspxb@vip.163.com
技术支持:北京勤云科技发展有限公司

漂浮通知


×
《中国食品学报》杂志社招聘编辑