基于时空Transformer模型的食品监督抽检分类预测研究
CSTR:
作者:
作者单位:

(1.江南大学人工智能与计算机学院 江苏无锡 214122;2.江南大学 科技部中英人工智能联合实验室 江苏无锡 214122)

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(SQ2023YFF1100111);国家自然科学基金项目(61772237)


Studies on Classification Prediction of Food Supervision Sampling Inspection Based on Spatio-temporal Transformer Model
Author:
Affiliation:

(1.School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, Jiangsu;2.Sino-UK Joint Laboratory on Artificial Intelligence of Ministry of Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:研究构建一种时空趋势与风险食品类别相关的多维分析模型,旨在实现对食品安全风险的高效预警,并为监督管理的智能化和精准化提供科学依据和决策支持。方法:依托江苏省市场监督管理局2019年至2024年间的食品抽检数据,设计一种基于时空Transformer的多分类预测模型。该模型深度挖掘食品安全事件在时间与空间维度的演变规律,并建立与风险类别的内在关联,实现对全时空点风险食品类别的预测。为解决多类别数据量差异导致的长尾分布问题,引入加权均方误差损失函数以优化训练,增强模型对尾部类别数据的敏感性。结果:采用4种最高风险类别分类指标与3种全类别风险分类指标综合评估模型的准确性,不仅在已发生风险区域的预测精度上与统计方法相当,而且在全时空范围内实现了全类别风险的高效预测。结论:时空Transformer多分类预测模型为食品安全监管部门提供了一种新颖且有效的工具,能够优化随机抽检策略并提升监管效率。

    Abstract:

    Objectives: This study aimed to develop a multidimensional analytical model for spatiotemporal trends and risk food categories, with the objective of achieving efficient early warning of food safety risks and providing a scientific basis and decision support for the intelligent and precise management of supervision. Methods: Based on the food sampling data from Jiangsu Market Supervision and Administration Bureau from 2019 to 2024, a spatio-temporal Transformer based multi-class prediction model was proposed. This model deeply explored the evolution patterns of food safety incidents in both temporal and spatial dimensions and established intrinsic associations with risk categories. To mitigate the long-tail distribution problem caused by disparities in data volume across multiple categories, a weighted mean squared error loss function was introduced to optimize model training, thereby enhancing the sensitivity of the model to tail categories. Results: The accuracy of the model was comprehensively evaluated using four high-risk category classification metrics and three all-category risk classification metrics. It not only achieved prediction accuracy comparable to statistical methods in regions where risks had occurred, but also efficiently predicted all-category risks across the entire spatiotemporal scope. Conclusions: The spatio-temporal Transformer multi-class prediction model provides a novel and effective tool for food safety regulatory authorities, enabling the optimization of random inspection strategies and enhancing regulatory efficiency.

    参考文献
    相似文献
    引证文献
引用本文

罗晓清,郭林,杨雨萌,黄耐云,吴小俊.基于时空Transformer模型的食品监督抽检分类预测研究[J].中国食品学报,2024,24(11):1-9

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-29
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-25
  • 出版日期:
文章二维码
版权所有 :《中国食品学报》杂志社     京ICP备09084417号-4
地址 :北京市海淀区阜成路北三街8号9层      邮政编码 :100048
电话 :010-65223596 65265375      电子邮箱 :chinaspxb@vip.163.com
技术支持:北京勤云科技发展有限公司

漂浮通知


×
《中国食品学报》杂志社招聘编辑