粮油加工过程品质控制的近红外智能检测装备现状与趋势
CSTR:
作者:
作者单位:

(1.江苏大学食品与生物工程学院 江苏镇江 212013;2.中储粮镇江粮油有限公司 江苏镇江 212006;3.江南大学食品学院 食品科学与资源挖掘全国重点实验室 江苏无锡 214122)

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(32472429);自治区区域协同创新专项(科技援疆计划)(2022E02094)


Status and Trends of Near-infrared Intelligent Detection Equipment for Quality Control in Grain and Oil Processing
Author:
Affiliation:

(1.School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu;2.China Grain Reserves Corporation Zhenjiang Grain and Oil Co., Ltd, Zhenjiang 212006, Jiangsu;3.State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    粮油加工作为食品工业的核心领域,其智能化转型亟需高效、精准的品质检测技术支撑。可见/近红外光谱技术凭借快速、无损、多指标同步检测的优势,已成为粮油加工过程品质监控的核心手段。本文系统梳理近红外光谱检测技术原理、智能装备研发及光谱数据处理方法的创新进展,即:硬件层面,便携式与在线监测装备突破小型化与抗干扰技术瓶颈,实现从实验室到工业场景的跨越;算法层面,光谱预处理、变量筛选与智能建模技术的融合,显著提升了检测精度与鲁棒性;应用层面,该技术已渗透至谷物加工链水分调控、油脂精炼氧化监测等关键环节,推动质控模式向数据驱动转型。然而,模型泛化能力不足、复杂工况适应性弱及标准化体系缺失仍是当前主要的技术瓶颈。未来需通过深度迁移学习、多源信息融合与边缘计算等技术优化“算法-设备-标准”协同创新体系,以实现粮油加工全链条实时质量调控与智能化升级。

    Abstract:

    As a core sector of the food industry, grain and oil processing urgently requires efficient and precise quality detection technologies to drive its intelligent transformation. Visible/Near-infrared (Vis/NIR) spectroscopy, with its advantages of rapid, non-destructive, and multi-parameter synchronous detection, has emerged as a pivotal tool for quality monitoring in grain and oil processing. This paper systematically reviewed the latest advancements in NIR detection principles, intelligent equipment development, and spectral data processing methodologies. At the hardware level, breakthroughs in miniaturization and anti-interference technologies had enabled portable and online monitoring devices to transition from laboratory research to industrial applications. Algorithmically, the integration of spectral preprocessing, variable selection, and intelligent modeling had significantly enhanced detection accuracy and robustness. In practical applications, the technology had been deployed across critical stages such as moisture regulation in grain processing chains and oxidation monitoring during oil refining, driving a shift toward data-driven quality control. However, challenges persist, including limited model generalization, weak adaptability to complex industrial environments, and the absence of standardized systems. Future advancements demanded collaborative innovation in 'algorithm-equipment-standard' systems through deep transfer learning, multi-source information fusion, and edge computing technologies to achieve real-time quality regulation and intelligent upgrades across the entire grain and oil processing chain.

    参考文献
    相似文献
    引证文献
引用本文

徐斌,高天慧,王宏平,林颢,程力,陈中伟.粮油加工过程品质控制的近红外智能检测装备现状与趋势[J].中国食品学报,2025,25(2):15-26

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-24
  • 出版日期:
文章二维码
版权所有 :《中国食品学报》杂志社     京ICP备09084417号-4
地址 :北京市海淀区阜成路北三街8号9层      邮政编码 :100048
电话 :010-65223596 65265375      电子邮箱 :chinaspxb@vip.163.com
技术支持:北京勤云科技发展有限公司

漂浮通知


×
《中国食品学报》杂志社招聘编辑