Thermal Inactivation Model of Staphylococcus aureus in Ground Pork Contained Cinnamaldehyde
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This paper studied the different concentrations of cinnamaldehyde(0, 0.1%, 0.5% and 1.0%) on the thermal inactivation of Staphylococcus aureus in ground pork ranging from 60 to 75 ℃. Different concentrations of cinnamaldehyde were added in the ground pork samples, then subjected to thermal treatment. The surviving cell number was counted on selective media. The results showed that at different temperatures, cinnamaldehyde promoted the thermal inactivation of S. aureus. Moreover, the thermal resistance of S. aureus decreased along with the increase of heat temperature and cinnamaldehyde concentration. At 75 ℃, cinnamaldehyde supplementation shortened the time needed to reach the non-detectable level of S. aureus in ground pork from 5 min to 3 min. When the inactivation curves were fitted by different kinetic models, polynomial fitting was suitable to describe the thermal inactivation regulation of S. aureus in ground pork added by cinnamaldehyde, where the secondary linear model had the highest coefficient value when different models were compared. When scanning electron microscopy(SEM) was used to observe the morphological changes of S. aureus exposed to cinnamaldehyde, the results revealed that the cinnamaldehyde ruptured the cell membrane, which leaded to the leakage of cytoplasm and might attributed to the promoting effect of cinnamaldehyde on thermal inactivation.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: October 08,2019
  • Published:
Article QR Code
Copyright :Journal of Chinese Institute of Food Science and Technology     京ICP备09084417号-4
Address :9/F, No. 8 North 3rd Street, Fucheng Road, Haidian District, Beijing, China      Postal code :100048
Telephone :010-65223596 65265376      E-mail :chinaspxb@vip.163.com
Supported by : Beijing E-Tiller Technology Development Co., Ltd.