Nutritional Health Risk Grading of Bacon Hyper-spectrum Based on Deep Learning
CSTR:
Author:
Affiliation:

(1.School of Artificial Intelligence,Beijing Technology and Business University,Beijing 100048;2.Beijing Key Laboratory of Big Data Technology for Food Safety,Beijing Technology and Business University,Beijing 100048)

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Based on the hyperspectral imaging of bacon,the CNN-SVM model designed in this paper organically combines deep learning extraction features with traditional machine learning extraction features to design an accurate and reliable bacon nutrition and health risk four classifier.The three-dimensional convolutional neural network is used to extract the deep features of the hyperspectral image of bacon,and the spectral features of the hyperspectral are fused.Both input the support vector machine (SVM) to realize the classification and health risk assessment of bacon,which is comparable to the national bacon biochemical detection standard.Consistent hyperspectral nutrition quality detection and health risk assessment indicators have achieved the research purpose of reliable and rapid evaluation of its health and nutrition quality.Based on the two classifications of bacon,the accuracy of the four classifications achieved by this method reaches 92.5%.The experimental results prove the feasibility and effectiveness of this method.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 02,2021
  • Revised:
  • Adopted:
  • Online: February 11,2022
  • Published:
Article QR Code
Copyright :Journal of Chinese Institute of Food Science and Technology     京ICP备09084417号-4
Address :9/F, No. 8 North 3rd Street, Fucheng Road, Haidian District, Beijing, China      Postal code :100048
Telephone :010-65223596 65265376      E-mail :chinaspxb@vip.163.com
Supported by : Beijing E-Tiller Technology Development Co., Ltd.