Predictive Modeling of the Effect of Dominant Background Microflora on the Growth of Staphylococcus aureus in Sauced Duck
CSTR:
Author:
Affiliation:

(1.College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002 ;2.China National Center for Food Safety Risk Assessment, Beijing 100022;3.College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310030;4.College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong;5.School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093)

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The objective of this study was to investigate the effect of dominant background microflora (BM) on the growth of Staphylococcus aureus in sauced duck, and then to develop and validate the predictive models. Non-competitive and competitive growth experiments of Staphylococcus aureus under 10, 12, 16, 20, 25, 30 ℃ were conducted respectively by inoculating Staphylococcus aureus alone or mixed with BM into the sterile sauced duck samples. Growth data under non-competitive or competitive experiments was used to directly construct both primary model (non-competitive growth model and competitive growth model) and secondary model through one-step kinetic analysis, and growth experiments from newly designed constant temperature conditions were chosen for model validation. The results showed that one-step approach can be used to predict the growth of Staphylococcus aureus and BM in sauced duck. Under non-competitive conditions, the estimated minimum growth temperature and maximum growth density of Staphylococcus aureus were 9.28 ℃ and 9.39 lg(CFU/g), respectively. The lag period of Staphylococcus aureus under competitive growth was slightly longer than those under non-competitive conditions, while there was no significant difference on the maximum specific growth rate. However, the growth rate of Staphylococcus aureus decreased significantly after the growth of BM entered into the stationary phase, indicating the inhibitory effect of BM on the growth Staphylococcus aureus (α = 0.556). And the estimated minimum growth temperature of Staphylococcus aureus was 9.40 ℃, and the maximum growth density of BM was 9.93 lg(CFU/g). Validation tests showed that the models could accurately describe the growth of Staphylococcus aureus and BM in sauced duck. The results of this study can provide scientific basis for quantitative risk assessment of Staphylococcus aureus in sauce duck and predict its shelf life.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 23,2021
  • Revised:
  • Adopted:
  • Online: May 26,2022
  • Published:
Article QR Code
Copyright :Journal of Chinese Institute of Food Science and Technology     京ICP备09084417号-4
Address :9/F, No. 8 North 3rd Street, Fucheng Road, Haidian District, Beijing, China      Postal code :100048
Telephone :010-65223596 65265376      E-mail :chinaspxb@vip.163.com
Supported by : Beijing E-Tiller Technology Development Co., Ltd.