Preparation, Characterization and Functional Study of Quinoa Polypeptide Complex with Food Polyphenols
CSTR:
Author:
Affiliation:

(College of Food and Biological Engineering, Zhejiang Gongshang University, Hangzhou 310018)

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The effects of tea polyphenols (TPs) and antioxidant of bamboo leaves (AOB) on quinoa polypeptides (QPs) properties were investigated. Polyphenols induced structural changes, affected antioxidant and antibacterial properties of the polypeptides. The structural changes of QPs with polyphenols in all the composite samples were studied by Fourier transform infrared and fluorescence spectroscopy. ANS probe was used to analyze the surface hydrophobicity of QPs, particle size and potential were used to characterize the QPs-polyphenol particles. The fluorescence results showed that the intrinsic fluorescence of QPs was quenched and decreased with the increase of the number of polyphenols added, and the maximum emission wavelength was red-shifted. Secondary structure analysis showed that the percentage of β-fold, α-helix and random coil of QPs decreased, while the percentage of β-turn increased in all composite samples. When the ratio of QPs to TPs was 1∶2, the percentages of β-fold, α-spiral, random crimp and β-corner were 43.58%, 17.20%, 12.92% and 26.30%, respectively. When the ratio of QPs to AOB was 1 ∶ 2, the percentages of β-folding, α-helix, random curling and β-corner were 49.60%, 14.99%, 9.79% and 25.62%, respectively. TPs significantly reduced the surface hydrophobicity of QPs (P<0.05), When the ratio of QPs ∶ TPs was 1 ∶ 2, the fluorescence intensity of ANS decreased from 74.131.67AU to 62.141.36AU; but AOB had no significant effect on the surface hydrophobicity of QPs (P>0.05). In addition, the combination of QPs with TPs or AOB significantly improve the antioxidant activity and inhibitory activity of QPs against Escherichia coli and Staphylococcus aureus(P<0.05). These findings demonstrate the feasible application of TPs and AOB to improve the functional properties of QPs and the potential use of QPs-polyphenol composites in food ingredients and functional food systems.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 04,2023
  • Revised:
  • Adopted:
  • Online: July 22,2024
  • Published:
Article QR Code
Copyright :Journal of Chinese Institute of Food Science and Technology     京ICP备09084417号-4
Address :9/F, No. 8 North 3rd Street, Fucheng Road, Haidian District, Beijing, China      Postal code :100048
Telephone :010-65223596 65265376      E-mail :chinaspxb@vip.163.com
Supported by : Beijing E-Tiller Technology Development Co., Ltd.